Ginzburg-Landau impurity terms for unconventional superconductors

被引:1
作者
Friesen, M
Muzikar, P
机构
[1] Department of Physics, Purdue University, West Lafayette
关键词
D O I
10.1007/BF02583838
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Ginzburg-Landau theory of superconductivity provides expressions for the free energy and the supercurrent in terms of a spatially varying order parameter. In the presence of a single impurity, these expressions and the differential equation for the order parameter are supplemented by additional terms. We compute these extra terms using microscopic theory. Our calculation is very general, covering any (k) over cap-dependent order parameter Delta((k) over cap) which transforms according to a one-dimensional irreducible representation of the crystalline point group.
引用
收藏
页码:1061 / 1062
页数:2
相关论文
共 9 条
[1]   GRADIENT FREE-ENERGY AND INTRINSIC ANGULAR-MOMENTUM IN UNCONVENTIONAL SUPERCONDUCTORS [J].
CHOI, CH ;
MUZIKAR, P .
PHYSICAL REVIEW B, 1989, 40 (07) :5144-5146
[2]  
FRIESEN M, IN PRESS PHYS REV B
[3]   PINNING IN TYPE-II SUPERCONDUCTORS [J].
LARKIN, AI ;
OVCHINNIKOV, YN .
JOURNAL OF LOW TEMPERATURE PHYSICS, 1979, 34 (3-4) :409-428
[4]   MIXED S-WAVE AND D-WAVE SUPERCONDUCTIVITY IN HIGH-TC SYSTEMS [J].
LI, QP ;
KOLTENBAH, BEC ;
JOYNT, R .
PHYSICAL REVIEW B, 1993, 48 (01) :437-455
[5]   LOCAL-STRUCTURE OF SUPERCURRENT FLOW PAST AN IMPURITY [J].
MUZIKAR, P .
PHYSICAL REVIEW B, 1991, 43 (13) :10201-10203
[6]   ELEMENTARY PINNING POTENTIALS IN SUPERCONDUCTORS WITH ANISOTROPIC FERMI-SURFACE [J].
THUNEBERG, EV .
CRYOGENICS, 1989, 29 (3A) :236-244
[7]   PINNING OF A VORTEX LINE TO A SMALL DEFECT IN SUPERCONDUCTORS [J].
THUNEBERG, EV ;
KURKIJARVI, J ;
RAINER, D .
PHYSICAL REVIEW LETTERS, 1982, 48 (26) :1853-1856
[8]   ELEMENTARY PINNING POTENTIAL IN TYPE-II SUPERCONDUCTORS NEAR HC2 [J].
THUNEBERG, EV .
JOURNAL OF LOW TEMPERATURE PHYSICS, 1984, 57 (3-4) :415-440
[9]   ELEMENTARY-FLUX-PINNING POTENTIAL IN TYPE-II SUPERCONDUCTORS [J].
THUNEBERG, EV ;
KURKIJARVI, J ;
RAINER, D .
PHYSICAL REVIEW B, 1984, 29 (07) :3913-3923