Calcium-dependent stabilization of the central sequence between Met76 and Ser81 in vertebrate calmodulin

被引:30
作者
Qin, ZH [1 ]
Squier, TC [1 ]
机构
[1] Univ Kansas, Biochem & Biophys Sect, Dept Mol Biosci, Lawrence, KS 66045 USA
关键词
D O I
10.1016/S0006-3495(01)75931-0
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Spin-label electron paramagnetic resonance (EPR) provides optimal resolution of dynamic and conformational heterogeneity on the nanosecond time-scale and was used to assess the structure of the sequence between Met(76) and Ser(81) in vertebrate calmodulin (CaM). Previous fluorescence resonance energy transfer and anisotropy measurements indicate that the opposing domains of CaM are structurally coupled and the interconnecting central sequence adopts conformationally distinct structures in the apo-form and following calcium activation. In contrast, NMR data suggest that the opposing domains of CaM undergo independent rotational dynamics and that the sequence between Met(76) and Ser(81) in the central sequence functions as a flexible linker that connects two structurally independent domains. However, these latter measurements also resolve weak internuclear interactions that suggest the formation of transient helical structures that are stable on the nanosecond time-scale within the sequence between Met(76) and Asp(80) in apo-CaM (H. Kuboniwa, N. Tjandra, S. Grzekiek, H. Ren, C. B. Klee, and A. Bax, 1995, Nat, Struct. Biol. 2:768-776). This reported conformational heterogeneity was resolved using site-directed mutagenesis and spin-label EPR, which detects two component spectra for 1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)-methanethiosulfonate spin labels (MTSSL) bound to CaM mutants T79C and S81C that include a motionally restricted component. In comparison to MTSSL bound within stable helical regions, the fractional contribution of the immobilized component at these positions is enhanced upon the addition of small amounts of the helicogenic solvent trifluoroethanol (TIFE). These results suggest that the immobilized component reflects the formation of stable secondary structures. Similar spectral changes are observed upon calcium activation, suggesting a calcium-dependent stabilization of the secondary structure. No corresponding changes are observed in either the solvent accessibility to molecular oxygen or the maximal hyperfine splitting. In contrast, more complex spectral changes in the line-shape and maximal hyperfine splitting are observed for spin labels bound to sites that undergo tertiary contact interactions. These results suggest that spin labels at solvent-exposed positions within the central sequence are primarily sensitive to backbone fluctuations and that either TFE or calcium binding stabilizes the secondary structure of the sequence between Met(76) and Ser(81) and modulates the structural coupling between the opposing domains of CaM.
引用
收藏
页码:2908 / 2918
页数:11
相关论文
共 70 条
[1]   Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: A site-directed spin-labeling study [J].
Altenbach, C ;
Yang, K ;
Farrens, DL ;
Farahbakhsh, ZT ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 1996, 35 (38) :12470-12478
[2]   CONFORMATION OF SPIN-LABELED MELITTIN AT MEMBRANE SURFACES INVESTIGATED BY PULSE SATURATION RECOVERY AND CONTINUOUS WAVE POWER SATURATION ELECTRON-PARAMAGNETIC RESONANCE [J].
ALTENBACH, C ;
FRONCISZ, W ;
HYDE, JS ;
HUBBELL, WL .
BIOPHYSICAL JOURNAL, 1989, 56 (06) :1183-1191
[3]   STRUCTURAL STUDIES ON TRANSMEMBRANE PROTEINS .2. SPIN LABELING OF BACTERIORHODOPSIN MUTANTS AT UNIQUE CYSTEINES [J].
ALTENBACH, C ;
FLITSCH, SL ;
KHORANA, HG ;
HUBBELL, WL .
BIOCHEMISTRY, 1989, 28 (19) :7806-7812
[4]   STRUCTURE OF CALMODULIN REFINED AT 2.2 A RESOLUTION [J].
BABU, YS ;
BUGG, CE ;
COOK, WJ .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 204 (01) :191-204
[5]   3-DIMENSIONAL STRUCTURE OF CALMODULIN [J].
BABU, YS ;
SACK, JS ;
GREENHOUGH, TJ ;
BUGG, CE ;
MEANS, AR ;
COOK, WJ .
NATURE, 1985, 315 (6014) :37-40
[6]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[7]   THE ALPHA-HELICAL CONTENT OF CALMODULIN IS INCREASED BY SOLUTION CONDITIONS FAVORING PROTEIN CRYSTALLIZATION [J].
BAYLEY, PM ;
MARTIN, SR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1160 (01) :16-21
[8]   A NOVEL REVERSIBLE THIOL-SPECIFIC SPIN LABEL - PAPAIN ACTIVE-SITE LABELING AND INHIBITION [J].
BERLINER, LJ ;
GRUNWALD, J ;
HANKOVSZKY, HO ;
HIDEG, K .
ANALYTICAL BIOCHEMISTRY, 1982, 119 (02) :450-455
[9]   CALMODULIN STRUCTURE REFINED AT 1.7 ANGSTROM RESOLUTION [J].
CHATTOPADHYAYA, R ;
MEADOR, WE ;
MEANS, AR ;
QUIOCHO, FA .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 228 (04) :1177-1192
[10]   Molecular motion of spin labeled side chains in α-helices:: Analysis by variation of side chain structure [J].
Columbus, L ;
Kálai, T ;
Jekö, J ;
Hideg, K ;
Hubbell, WL .
BIOCHEMISTRY, 2001, 40 (13) :3828-3846