Systemic inflammation induces apoptosis with variable vulnerability of different brain regions

被引:271
作者
Semmler, A
Okulla, T
Sastre, M
Dumitrescu-Ozimek, L
Heneka, MT
机构
[1] Univ Bonn, Dept Neurol, D-5300 Bonn, Germany
[2] Univ Munster, Dept Neurol, D-4400 Munster, Germany
关键词
sepsis iNOS brain apoptosis; septic encephalopathy; immunoreactivity;
D O I
10.1016/j.jchemneu.2005.07.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During severe sepsis several immunological defence mechanisms initiate a cascade of inflammatory events leading to multi-organ failure including septic encephalopathy and ultimately death. To assess the reaction and participation of parenchymal brain cells during endotoxaemia, the present study evaluates micro- and astroglial activation, expression of the inducible nitric oxide synthase (iNOS) pro- and antiapoptotic protein levels Bax and Bcl-2, and apoptosis. Male Wistar rats received 10 mg/kg lipopolysaccharide (LPS) or vehicle intraperitoneally and were sacrificed for brain collection at 4, 8 or 24 It after induction of experimental sepsis. One group of animals received 10 mg/kg of the NOS inhibitor N-monomethyl-L-arginine (L-NMMA) intraperitoneally 1 day before and during the experiment. Immunohistochemical evaluation revealed a sepsis-induced, time-dependent increase in the immunoreactivity of iNOS, glial fibrillary acidic protein (GFAP) and activated microglia (ED-1), paralleled by a time-dependent increase of apoptotic brain cells marked by terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL), an increase of Bax-positive cells and a decrease of Bcl-2-positive cells. Evaluation of different brain regions revealed that the hippocampus is the most vulnerable region during experimental sepsis. iNOS-inhibition with L-NMMA significantly reduced the number of apoptotic cells in hippocampus, midbrain and cerebellum. In addition, it reduced the increase of the proapoptotic protein Bax in all examined brain regions and reduced the decrease of Bcl-2-positive cells in the hippocampus. We therefore conclude, that peripheral inflammation leads to a profound glial activation, the generation of nitric oxide and changes of Bax and Bcl-2 protein regulation critical for apoptosis. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:144 / 157
页数:14
相关论文
共 49 条
[1]   Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria [J].
Bal-Price, A ;
Brown, GC .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (04) :1455-1464
[2]  
Bal-Price A, 2001, J NEUROSCI, V21, P6480
[3]   Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function [J].
Barger, SW ;
Basile, AS .
JOURNAL OF NEUROCHEMISTRY, 2001, 76 (03) :846-854
[4]   NEUROLOGIC COMPLICATIONS OF CRITICAL MEDICAL ILLNESSES [J].
BLECK, TP ;
SMITH, MC ;
PIERRELOUIS, SJC ;
JARES, JJ ;
MURRAY, J ;
HANSEN, CA .
CRITICAL CARE MEDICINE, 1993, 21 (01) :98-103
[5]   MICROGLIAL-PRODUCED NITRIC-OXIDE AND REACTIVE NITROGEN-OXIDES MEDIATE NEURONAL CELL-DEATH [J].
BOJE, KM ;
ARORA, PK .
BRAIN RESEARCH, 1992, 587 (02) :250-256
[6]   The epidemiology of the systemic inflammatory response [J].
Brun-Buisson, C .
INTENSIVE CARE MEDICINE, 2000, 26 (Suppl 1) :S64-S74
[7]  
CHAO CC, 1992, J IMMUNOL, V149, P2736
[8]  
Chao CC, 1996, GLIA, V16, P276, DOI 10.1002/(SICI)1098-1136(199603)16:3<276::AID-GLIA10>3.0.CO
[9]  
2-X
[10]   Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: Involvement of nitric oxide and of N-methyl-D-aspartate receptors [J].
Chao, CC ;
Hu, SX ;
Ehrlich, L ;
Peterson, PK .
BRAIN BEHAVIOR AND IMMUNITY, 1995, 9 (04) :355-365