Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

被引:190
作者
Cziczo, DJ
Murphy, DM
Hudson, PK
Thomson, DS
机构
[1] NOAA, Aeron Lab, Boulder, CO 80305 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
关键词
cirrus ice; single particle; chemical composition;
D O I
10.1029/2003JD004032
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
[1] The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry ( PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12degrees to 28degrees north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.
引用
收藏
页数:13
相关论文
共 64 条
[1]   Interactions of atmospheric trace gases with ice surfaces: Adsorption and reaction [J].
Abbatt, JPD .
CHEMICAL REVIEWS, 2003, 103 (12) :4783-4800
[2]   The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations [J].
Baumgardner, D ;
Jonsson, H ;
Dawson, W ;
O'Connor, D ;
Newton, R .
ATMOSPHERIC RESEARCH, 2001, 59 :251-264
[3]   Ice formation in (NH4)2SO4-H2O particles [J].
Bertram, AK ;
Koop, T ;
Molina, LT ;
Molina, MJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (03) :584-588
[4]  
Chen YL, 2000, J ATMOS SCI, V57, P3752, DOI 10.1175/1520-0469(2000)057<3752:IFBSAS>2.0.CO
[5]  
2
[6]   Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere [J].
Chen, YL ;
Kreidenweis, SM ;
McInnes, LM ;
Rogers, DC ;
DeMott, PJ .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (09) :1391-1394
[7]   Deliquescence, efflorescence, and supercooling of ammonium sulfate aerosols at low temperature: Implications for cirrus cloud formation and aerosol phase in the atmosphere [J].
Cziczo, DJ ;
Abbatt, JPD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D11) :13781-13790
[8]   Ablation, flux, and atmospheric implications of meteors inferred from stratospheric aerosol [J].
Cziczo, DJ ;
Thomson, DS ;
Murphy, DM .
SCIENCE, 2001, 291 (5509) :1772-1775
[9]   The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components [J].
DeMott, PJ ;
Rogers, DC ;
Kreidenweis, SM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D16) :19575-19584
[10]   African dust aerosols as atmospheric ice nuclei [J].
DeMott, PJ ;
Sassen, K ;
Poellot, MR ;
Baumgardner, D ;
Rogers, DC ;
Brooks, SD ;
Prenni, AJ ;
Kreidenweis, SM .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (14) :ASC1-1