Analysis of variance designs for model output

被引:392
作者
Jansen, MJW [1 ]
机构
[1] Ctr Biometry Wageningen, NL-6700 AA Wageningen, Netherlands
关键词
variance-based; regression-free; uncertainty analysis; experimental design; Latin hypercube sampling; scrambled quasi-random sampling;
D O I
10.1016/S0010-4655(98)00154-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A scalar model output Y is assumed to depend deterministically on a set of stochastically independent input vectors of different dimensions. The composition of the variance of Y is considered; variance components of particular relevance for uncertainty analysis are identified. Several analysis of variance designs for estimation of these variance components are discussed. Classical normal-model theory can suggest optimal designs. The designs can be implemented with various sampling methods: ordinary random sampling, latin hypercube sampling and scrambled quasi-random sampling. Some combinations of design and sampling method are compared in two small-scale numerical experiments. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 18 条
[1]   IMPLEMENTING SOBOLS QUASIRANDOM SEQUENCE GENERATOR [J].
BRATLEY, P ;
FOX, BL .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1988, 14 (01) :88-100
[2]   NON-LINEAR SENSITIVITY ANALYSIS OF MULTI-PARAMETER MODEL SYSTEMS [J].
CUKIER, RI ;
LEVINE, HB ;
SHULER, KE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 26 (01) :1-42
[3]   THE JACKKNIFE ESTIMATE OF VARIANCE [J].
EFRON, B ;
STEIN, C .
ANNALS OF STATISTICS, 1981, 9 (03) :586-596
[4]   A DISTRIBUTION-FREE APPROACH TO INDUCING RANK CORRELATION AMONG INPUT VARIABLES [J].
IMAN, RL ;
CONOVER, WJ .
COMMUNICATIONS IN STATISTICS PART B-SIMULATION AND COMPUTATION, 1982, 11 (03) :311-334
[5]  
JANSEN MJW, 1994, PREDICTABILITY AND NONLINEAR MODELLING IN NATURAL SCIENCES AND ECONOMICS, P334
[6]  
John P.W.M., 1971, STAT DESIGN ANAL EXP
[7]  
KRZYKACZ B, 1990, GRSA1700
[8]   A COMPARISON OF THREE METHODS FOR SELECTING VALUES OF INPUT VARIABLES IN THE ANALYSIS OF OUTPUT FROM A COMPUTER CODE [J].
MCKAY, MD ;
BECKMAN, RJ ;
CONOVER, WJ .
TECHNOMETRICS, 1979, 21 (02) :239-245
[9]  
MCKAY MD, 1996, NUREG1150
[10]  
NIEDERREITER H, 1992, RANDOM NUMBER GEN QU