Cellular and ionic basis for T-wave alternans under long-QT conditions

被引:263
作者
Shimizu, W [1 ]
Antzelevitch, C [1 ]
机构
[1] Mason Med Res Lab, Utica, NY 13501 USA
关键词
torsade de pointes; waves; action potentials; long-QT syndrome;
D O I
10.1161/01.CIR.99.11.1499
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-T-wave alternans (TWA), an ECG phenomenon characterized by beat-to-beat alternation of the morphology, amplitude, and/or polarity of the T wave, is commonly observed in the acquired and congenital long-QT syndromes (LQTS). This study examines the cellular and ionic basis for TWA induced by rapid pacing under conditions mimicking the LQT3 form of the congenital LQTS in an arterially perfused canine left ventricular wedge preparation. Methods and Results-Transmembrane action potentials from epicardial, M, and endocardial cells and 6 to 8 intramural unipolar electrograms were simultaneously recorded together with a transmural ECG and isometric tension development. In the presence of sea anemone toxin (ATX-II; 20 nmol/L), an increase in pacing rate (from a cycle length [CL] of 500 to 400 to 250 ms) produced a wide spectrum of T-wave and mechanical alternans. Acceleration to CLs of 400 to 300 ms produced mild to moderate TWA principally due to beat-to-beat alternation of repolarization of cells in the M region. Transmural dispersion of repolarization during alternans was exaggerated during alternate beats. Acceleration to CLs of 300 to 250 ms caused more pronounced beat-to-beat alternation of action potential duration (APD) of the M cell, resulting in a reversal of repolarization sequence across the ventricular wall, leading to alternation in the polarity of the T wave. The peak of the negative T waves coincided with repolarization of the M region, whereas the end of the negative T wave coincided with the repolarization of epicardium. In almost all cases, electrical alternans was concordant with mechanical alternans. Torsade de pointes occurred after an abrupt acceleration of CL, which was associated with marked TWA. Both ryanodine and low [Ca2+](o) completely suppressed alternans of the T wave, APD, and contraction, suggesting a critical role for intracellular Ca2+ cycling in the maintenance of TWA. Conclusions-Our results suggest that TWA observed at rapid rates under long-QT conditions is largely the result of alternation of the M-cell APD, leading to exaggeration of transmural dispersion of repolarization during alternate beats, and thus the potential for development of torsade de pointes. Our data also suggest that unlike transient forms of TWA that damp out quickly and depend on electrical restitution factors, the steady-state electrical and mechanical alternans demonstrated in this study appears to be largely the result of beat-to-beat alternans of [Ca2+](i).
引用
收藏
页码:1499 / 1507
页数:9
相关论文
共 33 条
[1]   Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes [J].
Antzelevitch, C ;
Sun, ZQ ;
Zhang, ZQ ;
Yan, GX .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1996, 28 (07) :1836-1848
[2]   CLINICAL RELEVANCE OF CARDIAC-ARRHYTHMIAS GENERATED BY AFTERDEPOLARIZATIONS - ROLE OF M-CELLS IN THE GENERATION OF U WAVES, TRIGGERED ACTIVITY AND TORSADE-DE-POINTES [J].
ANTZELEVITCH, C ;
SICOURI, S .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1994, 23 (01) :259-277
[3]   STUDY OF THE FACTORS RESPONSIBLE FOR RATE-DEPENDENT SHORTENING OF THE ACTION POTENTIAL IN MAMMALIAN VENTRICULAR MUSCLE [J].
BOYETT, MR ;
JEWELL, BR .
JOURNAL OF PHYSIOLOGY-LONDON, 1978, 285 (DEC) :359-380
[4]   Acceleration-induced action potential prolongation and early afterdepolarizations [J].
Burashnikov, A ;
Antzelevitch, C .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 1998, 9 (09) :934-948
[5]   Electrophysiological basis of arrhythmogenicity of QT/T alternans in the long-QT syndrome - Tridimensional analysis of the kinetics of cardiac repolarization [J].
Chinushi, M ;
Restivo, M ;
Caref, EB ;
El-Sherif, N .
CIRCULATION RESEARCH, 1998, 83 (06) :614-628
[6]  
EDDLESTONE GT, 1996, PACING CLIN ELECTROP, V19, P569
[7]   The electrophysiological mechanism of ventricular arrhythmias in the long QT syndrome - Tridimensional mapping of activation and recovery patterns [J].
ElSherif, N ;
Caref, EB ;
Yin, H ;
Restivo, M .
CIRCULATION RESEARCH, 1996, 79 (03) :474-492
[8]   ELECTRICAL AND MECHANICAL ALTERNANS IN CANINE MYOCARDIUM IN-VIVO - DEPENDENCE ON INTRACELLULAR CALCIUM CYCLING [J].
HIRAYAMA, Y ;
SAITOH, H ;
ATARASHI, H ;
HAYAKAWA, H .
CIRCULATION, 1993, 88 (06) :2894-2902
[9]   Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel [J].
Kambouris, NG ;
Nuss, HB ;
Johns, DC ;
Tomaselli, GF ;
Marban, E ;
Balser, JR .
CIRCULATION, 1998, 97 (07) :640-644
[10]   ABNORMAL CAI2+ HANDLING IS THE PRIMARY CAUSE OF MECHANICAL ALTERNANS - STUDY IN FERRET VENTRICULAR MUSCLES [J].
KIHARA, Y ;
MORGAN, JP .
AMERICAN JOURNAL OF PHYSIOLOGY, 1991, 261 (06) :H1746-H1755