Model of two-phase flow and flooding dynamics in polymer electrolyte fuel cells

被引:196
作者
Meng, H [1 ]
Wang, CY
机构
[1] Penn State Univ, Electrochem Engine Ctr, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
D O I
10.1149/1.1955007
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A mathematical model for two-phase flow and flooding dynamics in polymer electrolyte fuel cells (PEFCs) has been developed based on recent experimental observations. This three-dimensional PEFC model consists of four submodels to account for two-phase phenomena, including a catalyst coverage model in the catalyst layer, a two-phase transport model in the gas diffusion layer (GDL), a liquid coverage model at the GDL-channel interface, and a two-phase flow model in the gas channel (GC). The multiphase mixture (M-2) model is employed to describe liquid water transport in the GDL while a mist flow model is used in the gas channel. An interfacial coverage model by liquid water at the GDL/GC interface is developed, for the first time, to account for water droplet emergence on the GDL surface. The inclusion of this interfacial model not only gives the present two-phase model a capability to predict the cathode flooding effect on cell performance, but also ultimately removes the inability of prior two-phase models to correctly capture effects of the gas velocity (or stoichiometry) on cell performance. (c) 2005 The Electrochemical Society.
引用
收藏
页码:A1733 / A1741
页数:9
相关论文
共 32 条
[1]  
Bear J., 1988, DYNAMICS FLUIDS PORO
[2]  
Berger C., 1968, HDB FUEL CELL TECHNO
[3]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J].
Berning, T ;
Lu, DM ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :284-294
[4]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[5]   Investigation of the transversal water profile in nafion membranes in polymer electrolyte fuel cells [J].
Büchi, FN ;
Scherer, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (03) :A183-A188
[6]   Three-dimensional numerical simulation of straight channel PEM fuel cells [J].
Dutta, S ;
Shimpalee, S ;
Van Zee, JW .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (02) :135-146
[7]   Two-dimensional model for proton exchange membrane fuel cells [J].
Gurau, V ;
Liu, HT ;
Kakac, S .
AICHE JOURNAL, 1998, 44 (11) :2410-2422
[8]   Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields [J].
He, WS ;
Yi, JS ;
Nguyen, TV .
AICHE JOURNAL, 2000, 46 (10) :2053-2064
[9]   A single-phase, non-isothermal model for PEM fuel cells [J].
Ju, H ;
Meng, H ;
Wang, CY .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (07) :1303-1315
[10]  
Mazumder S, 2003, J ELECTROCHEM SOC, V150, pA1503, DOI 10.1149/1.1615608