Multiple structures of thick filaments in resting cardiac muscle and their influence on cross-bridge interactions

被引:59
作者
Levine, R
Weisberg, A
Kulikovskaya, I
McClellan, G
Winegrad, S [1 ]
机构
[1] Univ Penn, Sch Med, Dept Physiol, Philadelphia, PA 19104 USA
[2] Med Coll Penn & Hahnemann Univ, Philadelphia, PA 19129 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/S0006-3495(01)75764-5
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Based on two criteria, the tightness of packing of myosin rods within the backbone of the filament and the degree of order of the myosin heads, thick filaments isolated from a control group of rat hearts had three different structures. Two of the structures of thick filaments had ordered myosin heads and were distinguishable from each other by the difference in tightness of packing of the myosin rods. Depending on the packing, their structure has been called loose or tight. The third structure had narrow shafts and disordered myosin heads extending at different angles from the backbone. This structure has been called disordered. After phosphorylation of myosin-binding protein C (MyBP-C) with protein kinase A (PKA), almost all thick filaments exhibited the loose structure. Transitions from one structure to another in quiescent muscles were produced by changing the concentration of extracellular Ca. The probability of interaction between isolated thick and thin filaments in control, PKA-treated preparations, and preparations exposed to different Ca concentrations was estimated by electron microscopy. Interactions were more frequent with phosphorylated thick filaments having the loose structure than with either the tight or disordered structure. In view of the presence of MgATP and the absence of Ca, the interaction between the myosin heads and the thin filaments was most likely the weak attachment that precedes the force-generating steps in the cross-bridge cycle. These results suggest that phosphorylation of MyBP-C in cardiac thick filaments increases the probability of cross-bridges forming weak attachments to thin filaments in the absence of activation. This mechanism may modulate the number of cross-bridges generating force during activation.
引用
收藏
页码:1070 / 1082
页数:13
相关论文
共 35 条
[1]   STRUCTURAL-CHANGES ACCOMPANYING PHOSPHORYLATION OF TARANTULA MUSCLE MYOSIN-FILAMENTS [J].
CRAIG, R ;
PADRON, R ;
KENDRICKJONES, J .
JOURNAL OF CELL BIOLOGY, 1987, 105 (03) :1319-1327
[2]   LOCATION OF C-PROTEIN IN RABBIT SKELETAL-MUSCLE [J].
CRAIG, R ;
OFFER, G .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1976, 192 (1109) :451-461
[3]   THE PROGNOSTIC VALUE OF THE DURATION OF THE AMBULATORY ELECTROCARDIOGRAM AFTER MYOCARDIAL-INFARCTION [J].
DAVIS, BR ;
FRIEDMAN, LM ;
LICHSTEIN, E .
MEDICAL DECISION MAKING, 1988, 8 (01) :9-18
[4]   PHOSPHORYLATION OF C-PROTEIN, TROPONIN-I AND PHOSPHOLAMBAN IN ISOLATED RABBIT HEARTS [J].
GARVEY, JL ;
KRANIAS, EG ;
SOLARO, RJ .
BIOCHEMICAL JOURNAL, 1988, 249 (03) :709-714
[5]   PHOSPHORYLATION SWITCHES SPECIFIC FOR THE CARDIAC ISOFORM OF MYOSIN BINDING PROTEIN-C - A MODULATOR OF CARDIAC CONTRACTION [J].
GAUTEL, M ;
ZUFFARDI, O ;
FREIBURG, A ;
LABEIT, S .
EMBO JOURNAL, 1995, 14 (09) :1952-1960
[6]  
Gilbert R, 1996, J CELL SCI, V109, P101
[7]   KINETICS OF THE ACTOMYOSIN ATPASE IN MUSCLE-FIBERS [J].
GOLDMAN, YE .
ANNUAL REVIEW OF PHYSIOLOGY, 1987, 49 :637-654
[8]   Mutations in β-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C [J].
Gruen, M ;
Gautel, M .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 286 (03) :933-949
[9]  
HARTZELL HC, 1984, J BIOL CHEM, V259, P5587
[10]   STRUCTURAL-CHANGES IN MUSCLE CROSSBRIDGES ACCOMPANYING FORCE GENERATION [J].
HIROSE, K ;
FRANZINIARMSTRONG, C ;
GOLDMAN, YE ;
MURRAY, JM .
JOURNAL OF CELL BIOLOGY, 1994, 127 (03) :763-778