Redox characteristics of the eukaryotic cytosol

被引:150
作者
Lopez-Mirabal, H. Reynaldo [1 ]
Winther, Jakob R. [1 ]
机构
[1] Dept Mol Biol, DK-2100 Copenhagen, Denmark
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH | 2008年 / 1783卷 / 04期
关键词
redox potential; glutathione; disulfide; reactive oxygen species;
D O I
10.1016/j.bbamcr.2007.10.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The eukaryotic cytoplasm has long been regarded as a cellular compartment in which the reduced state of protein cysteines is largely favored. Under normal conditions, the cytosolic low-molecular weight redox buffer, comprising primarily of glutathione, is highly reducing and reactive oxygen species (ROS) and glutathionylated proteins are maintained at very low levels. In the present review, recent progress in the understanding of the cytosolic thiol-disulfide redox metabolism and novel analytical approaches to studying cytosolic redox properties are discussed. We will focus on the yeast model organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist for restricting the cytosolic glutathione redox potential to a relatively narrow interval. Several mutations in genes involved in cellular redox regulation cause ROS accumulation but only moderate decreases in the cytosolic glutathione reducing power. The redox regulation in the cytosol depends not only on multiple cytosolic factors but also on the redox homeostasis of other compartments like the secretory pathway and the mitochondria. Possibly, the cytosol is not just a reducing compartment surrounding organelles with high oxidative activity but also a milieu for regulation of the redox status of more than one compartment. Although much has been learned about redox homeostasis and oxidative stress response several important aspects of the redox regulation in the yeast cytosol are still unexplained. (C) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 115 条
[1]  
ASNIS RE, 1955, J BIOL CHEM, V213, P77
[2]   Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases [J].
Avery, AM ;
Avery, SV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :33730-33735
[3]   Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling [J].
Azevedo, D ;
Tacnet, F ;
Delaunay, A ;
Rodrigues-Pousada, C ;
Toledano, MB .
FREE RADICAL BIOLOGY AND MEDICINE, 2003, 35 (08) :889-900
[4]   Protein oxidation in aging, disease, and oxidative stress [J].
Berlett, BS ;
Stadtman, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20313-20316
[5]   ATP-dependent reduction of cysteine-sulphinic acid by S-cerevisiae sulphiredoxin [J].
Biteau, B ;
Labarre, J ;
Toledano, MB .
NATURE, 2003, 425 (6961) :980-984
[6]   Measuring intracellular redox conditions using GFP-based sensors [J].
Bjornberg, Olof ;
Ostergaard, Henrik ;
Winther, Jakob R. .
ANTIOXIDANTS & REDOX SIGNALING, 2006, 8 (3-4) :354-361
[7]   The local electrostatic environment determines cysteine reactivity of tubulin [J].
Britto, PJ ;
Knipling, L ;
Wolff, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (32) :29018-29027
[8]   Structural mechanism of oxidative regulation of the phosphatase Cdc25B via an intramolecular disulfide bond [J].
Buhrman, G ;
Parker, B ;
Sohn, J ;
Rudolph, J ;
Mattos, C .
BIOCHEMISTRY, 2005, 44 (14) :5307-5316
[9]   THE NUCLEAR-MAGNETIC-RESONANCE SOLUTION STRUCTURE OF THE MIXED DISULFIDE BETWEEN ESCHERICHIA-COLI GLUTAREDOXIN(C14S) AND GLUTATHIONE [J].
BUSHWELLER, JH ;
BILLETER, M ;
HOLMGREN, A ;
WUTHRICH, K .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 235 (05) :1585-1597
[10]   STRUCTURAL AND FUNCTIONAL-CHARACTERIZATION OF THE MUTANT ESCHERICHIA-COLI GLUTAREDOXIN(C14-]S) AND ITS MIXED DISULFIDE WITH GLUTATHIONE [J].
BUSHWELLER, JH ;
ASLUND, F ;
WUTHRICH, K ;
HOLMGREN, A .
BIOCHEMISTRY, 1992, 31 (38) :9288-9293