Circadian timekeeping during early Arabidopsis development

被引:53
作者
Salome, Patrice A. [1 ]
Xie, Qiguang [1 ]
McClung, C. Robertson [1 ]
机构
[1] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
关键词
D O I
10.1104/pp.108.117622
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The circadian coordination of organismal biology with the local temporal environment has consequences for fitness that may become manifest early in development. We directly explored the development of the Arabidopsis (Arabidopsis thaliana) clock in germinating seedlings by monitoring expression of clock genes. Clock function is detected within 2 d of imbibition (hydration of the dried seed). Imbibition is sufficient to synchronize individuals in a population in the absence of entraining cycles of light-dark or temperature, although light-dark and temperature cycles accelerate the appearance of rhythmicity and improve synchrony among individuals. Oscillations seen during the first 2 d following imbibition are dependent on the clock genes LATE ELONGATED HYPOCOTYL, TIMING OF CAB EXPRESSION1, ZEITLUPE, GIGANTEA, PSEUDO-RESPONSE REGULATOR7 (PRR7), and PRR9, although later circadian oscillations develop in mutants defective in each of these genes. In contrast to circadian rhythmicity, which developed under all conditions, amplitude was the only circadian parameter that demonstrated a clear response to the light environment; clock amplitude is low in the dark and high in the light. A circadian clock entrainable by temperature cycles in germinating etiolated seedlings may synchronize the buried seedling with the local daily cycles before emergence from the soil and exposure to light.
引用
收藏
页码:1110 / 1125
页数:16
相关论文
共 72 条
[1]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[2]   CIRCADIAN CLOCK-REGULATED AND PHYTOCHROME-REGULATED TRANSCRIPTION IS CONFERRED BY A 78 BP CIS-ACTING DOMAIN OF THE ARABIDOPSIS CAB2 PROMOTER [J].
ANDERSON, SL ;
TEAKLE, GR ;
MARTINOCATT, SJ ;
KAY, SA .
PLANT JOURNAL, 1994, 6 (04) :457-470
[3]  
Anderson SL, 1997, PLANT CELL, V9, P1727, DOI 10.1105/tpc.9.10.1727
[4]   FUNCTIONAL DISSECTION OF CIRCADIAN CLOCK-REGULATED AND PHYTOCHROME-REGULATED TRANSCRIPTION OF THE ARABIDOPSIS CAB2 GENE [J].
ANDERSON, SL ;
KAY, SA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (05) :1500-1504
[5]   Circadian rhythms from multiple oscillators: Lessons from diverse organisms [J].
Bell-Pedersen, D ;
Cassone, VM ;
Earnest, DJ ;
Golden, SS ;
Hardin, PE ;
Thomas, TL ;
Zoran, MJ .
NATURE REVIEWS GENETICS, 2005, 6 (07) :544-556
[6]   LIGHT-INDEPENDENT DEVELOPMENTAL REGULATION OF CAB GENE-EXPRESSION IN ARABIDOPSIS-THALIANA SEEDLINGS [J].
BRUSSLAN, JA ;
TOBIN, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (16) :7791-7795
[7]   Imaging of single light-responsive clock cells reveals fluctuating free-running periods [J].
Carr, AJF ;
Whitmore, D .
NATURE CELL BIOLOGY, 2005, 7 (03) :319-U127
[8]  
CHORY J, 1989, PLANT CELL, V1, P867, DOI 10.1105/tpc.1.9.867
[9]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[10]   The circadian clock regulates auxin signaling and responses in Arabidopsis [J].
Covington, Michael F. ;
Harmer, Stacey L. .
PLOS BIOLOGY, 2007, 5 (08) :1773-1784