Repair of HZE-Particle-induced DNA double-strand breaks in normal human fibroblasts

被引:139
作者
Asaithamby, Aroumougame [1 ]
Uematsu, Naoya [1 ]
Chatterjee, Aloke [2 ]
Story, Michael D. [1 ]
Burma, Sandeep [1 ]
Chen, David J. [1 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Radiat Oncol, Div Mol Radiat Biol, Dallas, TX 75390 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA
关键词
D O I
10.1667/RR1165.1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA damage generated by high-energy and high-Z (HZE) particles is more skewed toward multiply damaged sites or clustered DNA damage than damage induced by low-linear energy transfer (LET) X and gamma rays. Clustered DNA damage includes abasic sites, base damages and single- (SSBs) and double-strand breaks (DSBs). This complex DNA damage is difficult to repair and may require coordinated recruitment of multiple DNA repair factors. As a consequence of the production of irreparable clustered lesions, a greater biological effectiveness is observed for HZE-particle radiation than for low-LET radiation. To understand how the inability of cells to rejoin DSBs contributes to the greater biological effectiveness of HZE particles, the kinetics of DSB rejoining and cell survival after exposure of normal human skin fibroblasts to a spectrum of HZE particles was examined. Using gamma-H2AX as a surrogate marker for DSB formation and rejoining, the ability of cells to rejoin DSBs was found to decrease with increasing Z; specifically, iron-ion-induced DSBs were repaired at a rate similar to those induced by silicon ions, oxygen ions and gamma radiation, but a larger fraction of iron-ion-induced damage was irreparable. Furthermore, both DNA-PKcs (DSB repair factor) and 53BP1 (DSB sensing protein) co-localized with gamma-H2AX along the track of dense ionization produced by iron and silicon ions and their focus dissolution kinetics was similar to that of gamma-H2AX. Spatial co-localization analysis showed that unlike gamma-H2AX and 53BP1, phosphorylated DNA-PKcs was localized only at very specific regions, presumably representing the sites of DSBs within the tracks. Examination of cell survival by clonogenic assay indicated that cell killing was greater for iron ions than for silicon and oxygen ions and gamma rays. Collectively, these data demonstrate that the inability of cells to rejoin DSBs within clustered DNA lesions likely contributes to the greater biological effectiveness of HZE particles. (c) 2008 by Radiation Research Society.
引用
收藏
页码:437 / 446
页数:10
相关论文
共 48 条
[1]   Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage [J].
Anderson, L ;
Henderson, C ;
Adachi, Y .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (05) :1719-1729
[2]   Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks [J].
Bekker-Jensen, S ;
Lukas, C ;
Kitagawa, R ;
Melander, F ;
Kastan, MB ;
Bartek, J ;
Lukas, J .
JOURNAL OF CELL BIOLOGY, 2006, 173 (02) :195-206
[3]  
Blaisdell JO, 2001, RADIAT PROT DOSIM, V97, P25, DOI 10.1093/oxfordjournals.rpd.a006634
[4]   CONSTRAINTS ON ENERGY DEPOSITION AND TARGET SIZE OF MULTIPLY DAMAGED SITES ASSOCIATED WITH DNA DOUBLE-STRAND BREAKS [J].
BRENNER, DJ ;
WARD, JF .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 1992, 61 (06) :737-748
[5]   Role of DNA-PK in the cellular response to DNA double-strand breaks [J].
Burma, S ;
Chen, DJ .
DNA REPAIR, 2004, 3 (8-9) :909-918
[6]   Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks [J].
Chan, DW ;
Chen, BPC ;
Prithivirajsingh, S ;
Kurimasa, A ;
Story, MD ;
Qin, J ;
Chen, DJ .
GENES & DEVELOPMENT, 2002, 16 (18) :2333-2338
[7]   MICRODOSIMETRIC STRUCTURE OF HEAVY-ION TRACKS IN TISSUE [J].
CHATTERJEE, A ;
SCHAEFER, HJ .
RADIATION AND ENVIRONMENTAL BIOPHYSICS, 1976, 13 (03) :215-227
[8]   Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks [J].
Chen, BPC ;
Chan, DW ;
Kobayashi, J ;
Burma, S ;
Asaithamby, A ;
Morotomi-Yano, K ;
Botvinick, E ;
Qin, J ;
Chen, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (15) :14709-14715
[9]   Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains [J].
Costes, Sylvain V. ;
Ponomarev, Artem ;
Chen, James L. ;
Nguyen, David ;
Cucinotta, Francis A. ;
Barcellos-Hoff, Mary Helen .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (08) :1477-1488
[10]  
Cucinotta FA, 2000, RADIAT RES, V153, P459, DOI 10.1667/0033-7587(2000)153[0459:MFRDOF]2.0.CO