Adaptive biasing force method for scalar and vector free energy calculations

被引:706
作者
Darve, Eric [1 ]
Rodriguez-Gomez, David [2 ]
Pohorille, Andrew [2 ,3 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA
[3] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
基金
美国国家航空航天局;
关键词
D O I
10.1063/1.2829861
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In free energy calculations based on thermodynamic integration, it is necessary to compute the derivatives of the free energy as a function of one (scalar case) or several (vector case) order parameters. We derive in a compact way a general formulation for evaluating these derivatives as the average of a mean force acting on the order parameters, which involves first derivatives with respect to both Cartesian coordinates and time. This is in contrast with the previously derived formulas, which require first and second derivatives of the order parameter with respect to Cartesian coordinates. As illustrated in a concrete example, the main advantage of this new formulation is the simplicity of its use, especially for complicated order parameters. It is also straightforward to implement in a molecular dynamics code, as can be seen from the pseudocode given at the end. We further discuss how the approach based on time derivatives can be combined with the adaptive biasing force method, an enhanced sampling technique that rapidly yields uniform sampling of the order parameters, and by doing so greatly improves the efficiency of free energy calculations. Using the backbone dihedral angles Phi and Psi in N-acetylalanyl-N'-methylamide as a numerical example, we present a technique to reconstruct the free energy from its derivatives, a calculation that presents some difficulties in the vector case because of the statistical errors affecting the derivatives. (c) 2008 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 58 条
[2]   Self-guided enhanced sampling methods for thermodynamic averages [J].
Andricioaei, I ;
Dinner, AR ;
Karplus, M .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (03) :1074-1084
[3]   Calculation of conformational transitions and barriers in solvated systems: Application to the alanine dipeptide in water [J].
Apostolakis, J ;
Ferrara, P ;
Caflisch, A .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (04) :2099-2108
[4]  
Bartels C, 1997, J COMPUT CHEM, V18, P1450, DOI 10.1002/(SICI)1096-987X(199709)18:12<1450::AID-JCC3>3.0.CO
[5]  
2-I
[6]   MULTICANONICAL ENSEMBLE - A NEW APPROACH TO SIMULATE 1ST-ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICAL REVIEW LETTERS, 1992, 68 (01) :9-12
[7]   SIMULATIONS OF PEPTIDE CONFORMATIONAL DYNAMICS AND THERMODYNAMICS [J].
BROOKS, CL ;
CASE, DA .
CHEMICAL REVIEWS, 1993, 93 (07) :2487-2502
[8]   Equilibrium free energies from nonequilibrium metadynamics [J].
Bussi, G ;
Laio, A ;
Parrinello, M .
PHYSICAL REVIEW LETTERS, 2006, 96 (09)
[9]   CONSTRAINED REACTION COORDINATE DYNAMICS FOR THE SIMULATION OF RARE EVENTS [J].
CARTER, EA ;
CICCOTTI, G ;
HYNES, JT ;
KAPRAL, R .
CHEMICAL PHYSICS LETTERS, 1989, 156 (05) :472-477
[10]   Exploring the free-energy landscape of a short peptide using an average force -: art. no. 244906 [J].
Chipot, C ;
Hénin, J .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (24)