Intriguing heat conduction of a chain with transverse motions

被引:110
作者
Wang, JS [1 ]
Li, BW
机构
[1] Natl Univ Singapore, Singapore MIT Alliance, Singapore 117543, Singapore
[2] Natl Univ Singapore, Dept Computat Sci, Singapore 117543, Singapore
[3] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
关键词
D O I
10.1103/PhysRevLett.92.074302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study heat conduction in a one-dimensional chain of particles with longitudinal as well as transverse motions. The particles are connected by two-dimensional harmonic springs together with bending angle interactions. Using equilibrium and nonequilibrium molecular dynamics, three types of thermal conducting behaviors are found: a logarithmic divergence with system sizes for large transverse coupling, 1/3 power law at intermediate coupling, and 2/5 power law at low temperatures and weak coupling. The results are consistent with a simple mode-coupling analysis of the same model. We suggest that the 1/3 power-law divergence should be a generic feature for models with transverse motions.
引用
收藏
页数:4
相关论文
共 25 条
[1]   Heat conductivity and dynamical instability [J].
Alonso, D ;
Artuso, R ;
Casati, G ;
Guarneri, I .
PHYSICAL REVIEW LETTERS, 1999, 82 (09) :1859-1862
[2]   Polygonal billiards and transport: Diffusion and heat conduction [J].
Alonso, D ;
Ruiz, A ;
de Vega, I .
PHYSICAL REVIEW E, 2002, 66 (06) :15-066131
[3]  
Bonetto F., 2000, MATH PHYS 2000, P128, DOI [DOI 10.1142/9781848160224_0008, 10.1142/9781848160224_0008.]
[4]   ONE-DIMENSIONAL CLASSICAL MANY-BODY SYSTEM HAVING A NORMAL THERMAL-CONDUCTIVITY [J].
CASATI, G ;
FORD, J ;
VIVALDI, F ;
VISSCHER, WM .
PHYSICAL REVIEW LETTERS, 1984, 52 (21) :1861-1864
[5]   Anomalous heat conduction in a one-dimensional ideal gas [J].
Casati, G ;
Prosen, T .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[6]   Heat conduction and entropy production in a one-dimensional hard-particle gas [J].
Grassberger, P ;
Nadler, W ;
Yang, L .
PHYSICAL REVIEW LETTERS, 2002, 89 (18) :1-180601
[7]   Heat conduction in one-dimensional nonintegrable systems [J].
Hu, BB ;
Li, BW ;
Zhao, H .
PHYSICAL REVIEW E, 2000, 61 (04) :3828-3831
[8]   Heat conduction in one-dimensional chains [J].
Hu, BB ;
Li, BW ;
Zhao, H .
PHYSICAL REVIEW E, 1998, 57 (03) :2992-2995
[9]   THERMAL-CONDUCTIVITY IN ONE-DIMENSIONAL LATTICES OF FERMI-PASTA-ULAM TYPE [J].
KABURAKI, H ;
MACHIDA, M .
PHYSICS LETTERS A, 1993, 181 (01) :85-90
[10]  
KUBO R, 1992, STAT PHYS, V2, P97