Osteopontin-deficient bone cells are defective in their ability to produce NO in response to pulsatile fluid flow

被引:17
作者
Denhardt, DT
Burger, EH
Kazanecki, C
Krishna, S
Semeins, CM
Klein-Nulend, J
机构
[1] Rutgers State Univ, Nelson Biol Labs, Dept Cell Biol & Neurosci, Piscataway, NJ 08854 USA
[2] Vrije Univ Amsterdam, Acad Ctr Dent Amsterdam, Dept Oral Cell Biol, ACTA, Amsterdam, Netherlands
关键词
mechanotransduction; fluid flow; nitric oxide; osteopontin; prostaglandin; osteocyte; osteoblast; cyclooxygenase;
D O I
10.1006/bbrc.2001.5780
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Osteopontin (OPN) is a noncollagenous component of bone matrix. It mediates cell attachment and activates signal transduction pathways. In this work, bone cells, cultured from fragments of long bones derived from wild-type and OPN-/- ("knock-out") mice, were exposed to pulsatile fluid flow (PFF) over a 60-min period. The medium was assayed periodically for nitric oxide (NO) and prostaglandin E-2 (PGE(2)) release. OPN+/+ cells exhibited a peak of NO production 5-10 min after the onset of PFF, decreasing to a stable plateau at 15 min; much less NO was produced by the OPN-/- cells. PFF resulted in reduced PGE2 release by both cell types, although the reduction was less for the OPN-/- cells in the 15-30 min window. Both cell types exhibited a similar enhancement of cyclooxygenase2 mRNA levels 60 min after initiation of PFF. These results suggest that bone cells require OPN to respond fully to PFF as assessed by increased NO and reduced PGE synthesis. (C) 2001 Academic Press.
引用
收藏
页码:448 / 453
页数:6
相关论文
共 41 条
[1]   Adhesive properties of isolated chick osteocytes in vitro [J].
Aarden, EM ;
Nijweide, PJ ;
VanderPlas, A ;
Alblas, MJ ;
Mackie, EJ ;
Horton, MA ;
Helfrich, MH .
BONE, 1996, 18 (04) :305-313
[2]   Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity [J].
Aguirre, J ;
Buttery, L ;
O'Shaughnessy, M ;
Afzal, F ;
de Marticorena, IF ;
Hukkanen, M ;
Huang, P ;
MacIntyre, I ;
Polak, J .
AMERICAN JOURNAL OF PATHOLOGY, 2001, 158 (01) :247-257
[3]   Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase [J].
Armour, KE ;
Armour, KJ ;
Gallagher, ME ;
Gödecke, A ;
Helfrich, MH ;
Reid, DM ;
Ralston, SH .
ENDOCRINOLOGY, 2001, 142 (02) :760-766
[4]   Osteopontin facilitates angiogenesis, accumulation of osteoclasts, and resorption in ectopic bone [J].
Asou, Y ;
Rittling, SR ;
Yoshitake, H ;
Tsuji, K ;
Shinomiya, K ;
Nifuji, A ;
Denhardt, DT ;
Noda, M .
ENDOCRINOLOGY, 2001, 142 (03) :1325-1332
[5]   The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent [J].
Bakker, AD ;
Soejima, K ;
Klein-Nulend, J ;
Burger, EH .
JOURNAL OF BIOMECHANICS, 2001, 34 (05) :671-677
[6]   Mechanotransduction in bone - role of the lacuno-canalicular network [J].
Burger, EH ;
Klein-Nulend, J .
FASEB JOURNAL, 1999, 13 :S101-S112
[7]  
CARVALHO RS, 1998, J CELL BIOCHEM, V70, P367
[8]   Defining Ca2+/calmodulin-dependent protein kinase cascades in transcriptional regulation [J].
Corcoran, EE ;
Means, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (05) :2975-2978
[9]   CANDIDATES FOR THE MECHANOSENSORY SYSTEM IN BONE [J].
COWIN, SC ;
MOSSSALENTIJN, L ;
MOSS, ML .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1991, 113 (02) :191-197
[10]  
Frost HM, 1996, ANAT RECORD, V244, P139, DOI 10.1002/(SICI)1097-0185(199602)244:2<139::AID-AR1>3.0.CO