Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite -: art. no. D05302

被引:32
作者
Ricaud, P
Lefèvre, F
Berthet, G
Murtagh, D
Llewellyn, EJ
Mégie, G
Kyrölä, E
Leppelmeier, GW
Auvinen, H
Boonne, C
Brohede, S
Degenstein, DA
de La Noë, J
Dupuy, E
El Amraoui, L
Eriksson, P
Evans, WFJ
Frisk, U
Gattinger, RL
Girod, F
Haley, CS
Hassinen, S
Hauchecorne, A
Jimenez, C
Kyrö, E
Lautié, N
Le Flochmoën, E
Lloyd, ND
McCconnell, JC
McDade, IC
Nordh, L
Olberg, M
Pazmino, A
Petelina, SV
Sandqvist, A
Seppälä, A
Sioris, CE
Solheim, BH
Stegman, J
Strong, K
Taalas, P
Urban, J
von Savigny, C
von Scheele, F
Witt, G
机构
[1] OASU, L3AB, F-33270 Floirac, France
[2] Finnish Meteorol Inst, Dept Geophys, FIN-00101 Helsinki, Finland
[3] Chalmers, Dept Radio & Space Sci, SE-41296 Gothenburg, Sweden
[4] Univ Saskatchewan, Inst Space & Atmospher Studies, Saskatoon, SK S7N 5E2, Canada
[5] Trent Univ, Dept Phys, Peterborough, ON K9J 7B8, Canada
[6] Swedish Space Corp, SE-17104 Solna, Sweden
[7] Ctr Natl Etud Spatiales, F-31401 Toulouse, France
[8] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 1P3, Canada
[9] SCFAB, Stockholm Observ, SE-10691 Stockholm, Sweden
[10] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[11] Univ Stockholm, Dept Meteorol, SE-10691 Stockholm, Sweden
[12] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[13] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany
关键词
D O I
10.1029/2004JD005018
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In September 2002 the Antarctic polar vortex split in two under the influence of a sudden warming. During this event, the Odin satellite was able to measure both ozone (O-3) and chlorine monoxide (ClO), a key constituent responsible for the so-called "ozone hole'', together with nitrous oxide (N2O), a dynamical tracer, and nitric acid (HNO3) and nitrogen dioxide (NO2), tracers of denitrification. The submillimeter radiometer (SMR) microwave instrument and the Optical Spectrograph and Infrared Imager System (OSIRIS) UV-visible light spectrometer (VIS) and IR instrument on board Odin have sounded the polar vortex during three different periods: before (19-20 September), during (24-25 September), and after (1-2 and 4-5 October) the vortex split. Odin observations coupled with the Reactive Processes Ruling the Ozone Budget in the Stratosphere (REPROBUS) chemical transport model at and above 500 K isentropic surfaces (heights above 18 km) reveal that on 19-20 September the Antarctic vortex was dynamically stable and chemically nominal: denitrified, with a nearly complete chlorine activation, and a 70% O-3 loss at 500 K. On 25-26 September the unusual morphology of the vortex is monitored by the N2O observations. The measured ClO decay is consistent with other observations performed in 2002 and in the past. The vortex split episode is followed by a nearly complete deactivation of the ClO radicals on 1-2 October, leading to the end of the chemical O-3 loss, while HNO3 and NO2 fields start increasing. This acceleration of the chlorine deactivation results from the warming of the Antarctic vortex in 2002, putting an early end to the polar stratospheric cloud season. The model simulation suggests that the vortex elongation toward regions of strong solar irradiance also favored the rapid reformation of ClONO2. The observed dynamical and chemical evolution of the 2002 polar vortex is qualitatively well reproduced by REPROBUS. Quantitative differences are mainly attributable to the too weak amounts of HNO3 in the model, which do not produce enough NO2 in presence of sunlight to deactivate chlorine as fast as observed by Odin.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 39 条
[1]  
[Anonymous], 2000, INVERSE METHODS ATMO
[2]   Studies for the Odin sub-millimetre radiometer.: II.: Retrieval methodology [J].
Baron, P ;
Ricaud, P ;
de la Noë, J ;
Eriksson, JEP ;
Merino, F ;
Ridal, M ;
Murtagh, DP .
CANADIAN JOURNAL OF PHYSICS, 2002, 80 (04) :341-356
[3]   AN ANALYTIC-EXPRESSION FOR THE COMPOSITION OF AQUEOUS HNO3-H2SO4 STRATOSPHERIC AEROSOLS INCLUDING GAS-PHASE REMOVAL OF HNO3 [J].
CARSLAW, KS ;
LUO, BP ;
PETER, T .
GEOPHYSICAL RESEARCH LETTERS, 1995, 22 (14) :1877-1880
[4]  
de Zafra R, 2001, J GEOPHYS RES-ATMOS, V106, P23115, DOI 10.1029/2000JD000314
[5]   Arctic chemical ozone depletion during the 1994-1995 winter deduced from POAM II satellite observations and the REPROBUS three-dimensional model [J].
Deniel, C ;
Bevilacqua, RM ;
Pommereau, JP ;
Lefevre, F .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D15) :19231-19244
[6]   CHLORINE MONOXIDE IN THE ANTARCTIC SPRING VORTEX .1. EVOLUTION OF MIDDAY VERTICAL PROFILES OVER MCMURDO STATION, 1993 [J].
DEZAFRA, RL ;
REEVES, JM ;
SHINDELL, DT .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D7) :13999-14007
[7]   INTERHEMISPHERIC DIFFERENCES IN SPRINGTIME PRODUCTION OF HCL AND CLONO2 IN THE POLAR VORTICES [J].
DOUGLASS, AR ;
SCHOEBERL, MR ;
STOLARSKI, RS ;
WATERS, JW ;
RUSSELL, JM ;
ROCHE, AE ;
MASSIE, ST .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D7) :13967-13978
[8]   Strato-mesospheric measurements of carbon monoxide with the Odin Sub-Millimetre Radiometer:: Retrieval and first results -: art. no. L20101 [J].
Dupuy, É ;
Urban, J ;
Ricaud, P ;
Le Flochmoëm, É ;
Lautié, N ;
Murtagh, D ;
De La Noë, J ;
El Amraoui, L ;
Eriksson, P ;
Forkman, P ;
Frisk, U ;
Jégou, F ;
Jiménez, C ;
Olberg, M .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (20) :L201011-5
[9]   STRATOSPHERIC CLO PROFILES FROM MCMURDO-STATION, ANTARCTICA, SPRING-1992 [J].
EMMONS, LK ;
SHINDELL, DT ;
REEVES, JM ;
DEZAFRA, RL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D2) :3049-3055
[10]   LARGE LOSSES OF TOTAL OZONE IN ANTARCTICA REVEAL SEASONAL CLOX/NOX INTERACTION [J].
FARMAN, JC ;
GARDINER, BG ;
SHANKLIN, JD .
NATURE, 1985, 315 (6016) :207-210