Spiers memorial lecture:: Lessons from biomineralization:: comparing the growth strategies of mollusc shell prismatic and nacreous layers in Atrina rigida

被引:200
作者
Nudelman, Fabio
Chen, Hong H.
Goldberg, Harvey A.
Weiner, Steve
Addadi, Lia [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel
[2] Univ Western Ontario, Schulich Sch Med & Dent, CIHR Grp Skeletal Dev & Remodeling, London, ON N6A 5C1, Canada
关键词
D O I
10.1039/b704418f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mollusc shell prismatic layer of Atrina rigida is composed of an assemblage of large and relatively perfect single calcite crystals, embedded in an organic matrix. A key to elucidating basic mechanisms of mineralization is understanding the structures of the matrix, the mineral and the relations between them. The matrix that envelopes each prism (the inter-prismatic matrix) is composed mainly of glycine-rich proteins, while the matrix inside each prism (intra-crystalline matrix) is composed of a network of chitin fibers. Prisms grow by deposition of mineral particles on the chitin fibers. The mineral particles are associated with highly acidic proteins from the Asprich family, which presumably stabilize an amorphous mineral precursor. We infer that once in contact with the already formed crystalline prism, the particles crystallize by epitaxial nucleation. In nacre, sheets of P-chitin are interspaced by silk-like proteins in a hydrated get-like state. P-Chitin forms a scaffold onto which the acidic proteins are adsorbed. Some of these are organized into a crystal nucleation site, where nucleation of aragonite, supposedly from colloidal amorphous calcium carbonate particles, is induced. Comparing the mechanisms of growth of the nacreous and prismatic layers can help to understand the underlying strategies of formation of mineralized structures.
引用
收藏
页码:9 / 25
页数:17
相关论文
共 59 条
[1]   Mollusk shell formation: A source of new concepts for understanding biomineralization processes [J].
Addadi, L ;
Joester, D ;
Nudelman, F ;
Weiner, S .
CHEMISTRY-A EUROPEAN JOURNAL, 2006, 12 (04) :981-987
[2]   CONTROL AND DESIGN PRINCIPLES IN BIOLOGICAL MINERALIZATION [J].
ADDADI, L ;
WEINER, S .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1992, 31 (02) :153-169
[3]   A CHEMICAL-MODEL FOR THE COOPERATION OF SULFATES AND CARBOXYLATES IN CALCITE CRYSTAL NUCLEATION - RELEVANCE TO BIOMINERALIZATION [J].
ADDADI, L ;
MORADIAN, J ;
SHAY, E ;
MAROUDAS, NG ;
WEINER, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (09) :2732-2736
[4]   INTERACTIONS BETWEEN ACIDIC PROTEINS AND CRYSTALS - STEREOCHEMICAL REQUIREMENTS IN BIOMINERALIZATION [J].
ADDADI, L ;
WEINER, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (12) :4110-4114
[5]   Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates [J].
Aizenberg, J ;
Lambert, G ;
Addadi, L ;
Weiner, S .
ADVANCED MATERIALS, 1996, 8 (03) :222-&
[6]   Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro [J].
Albeck, S ;
Weiner, S ;
Addadi, L .
CHEMISTRY-A EUROPEAN JOURNAL, 1996, 2 (03) :278-284
[7]   Control of crystal phase switching and orientation by soluble mollusc-shell proteins [J].
Belcher, AM ;
Wu, XH ;
Christensen, RJ ;
Hansma, PK ;
Stucky, GD ;
Morse, DE .
NATURE, 1996, 381 (6577) :56-58
[8]   Cellular control over spicule formation in sea urchin embryos: A structural approach [J].
Beniash, E ;
Addadi, L ;
Weiner, S .
JOURNAL OF STRUCTURAL BIOLOGY, 1999, 125 (01) :50-62
[9]  
BERGER LR, 1958, BIOCHIM BIOPHYS ACTA, V29, P522
[10]   BIOLOGICAL-CONTROL OF CRYSTAL TEXTURE - A WIDESPREAD STRATEGY FOR ADAPTING CRYSTAL PROPERTIES TO FUNCTION [J].
BERMAN, A ;
HANSON, J ;
LEISEROWITZ, L ;
KOETZLE, TF ;
WEINER, S ;
ADDADI, L .
SCIENCE, 1993, 259 (5096) :776-779