Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1, and yOGG2

被引:73
作者
Leipold, MD [1 ]
Workman, H [1 ]
Muller, JG [1 ]
Burrows, CJ [1 ]
David, SS [1 ]
机构
[1] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
关键词
D O I
10.1021/bi034951b
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
8-Oxo-7,8-dihydroguanine (OG) is susceptible to further oxidation in vitro to form two secondary oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp). Previous work from this laboratory has shown that OG, Gh, and Sp are recognized and excised from duplex DNA substrates by the Escherichia coli DNA repair enzyme Fpg. In this report, we extend these studies to the functionally related eukaryotic OG glycosylases (OGG) from yeast and humans: yOGG1, yOGG2, and hOGG1. The hOGG1 enzyme was active only toward the removal of 8-oxoguanine, exhibiting a 1000-fold faster rate of removal of 8-oxoguanine from OG.C-containing duplexes relative to their OG.A counterparts. Duplexes containing Gh or Sp opposite any of the four natural bases were not substrates for the hOGG1 enzyme. In contrast, both yOGG1 and yOGG2 enzymes removed Gh and Sp in a relatively efficient manner from an 18 bp duplex. No significant difference was observed in the rate of reaction of Gh- and Sp-containing duplexes with yOGG1. However, yOGG2 removed Sp at a faster rate than Gh. Both yOGG enzymes exhibit a negligible dependence on the base opposite the lesion, suggesting that the activity of these enzymes may be promutagenic. Surprisingly, in the 18 bp sequence context, both yOGG enzymes did not exhibit OG removal activity. However, both removed OG in a 30 bp duplex with a different sequence surrounding the OG. The wide range of repair efficiencies observed by these enzymes with different substrates in vitro suggests that this could greatly affect the mutagenicity of these lesions in vivo. Indeed, the greater efficiency of the yOGG proteins for removal of the further oxidized products, Gh and Sp, over their 8-oxoguanine parent, suggests that these lesions may be the preferred substrates in vivo.
引用
收藏
页码:11373 / 11381
页数:9
相关论文
共 64 条
[1]   Spiroiminodihydantoin is a major product in the photooxidation of 2′-deoxyguanosine by the triplet states and oxyl radicals generated from hydroxyacetophenone photolysis and dioxetane thermolysis [J].
Adam, W ;
Arnold, MA ;
Grune, M ;
Nau, WM ;
Pischel, U ;
Saha-Möller, CR .
ORGANIC LETTERS, 2002, 4 (04) :537-540
[2]   Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors [J].
Al-Tassan, N ;
Chmiel, NH ;
Maynard, J ;
Fleming, N ;
Livingston, AL ;
Williams, GT ;
Hodges, AK ;
Davies, DR ;
David, SS ;
Sampson, JR ;
Cheadle, JR .
NATURE GENETICS, 2002, 30 (02) :227-232
[3]  
Audebert M, 2000, CANCER RES, V60, P4740
[4]   Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites [J].
Bjoras, M ;
Luna, L ;
Johnson, B ;
Hoff, E ;
Haug, T ;
Rognes, T ;
Seeberg, E .
EMBO JOURNAL, 1997, 16 (20) :6314-6322
[5]   Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA [J].
Bruner, SD ;
Norman, DPG ;
Verdine, GL .
NATURE, 2000, 403 (6772) :859-866
[6]   Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway [J].
Bruner, SD ;
Nash, HM ;
Lane, WS ;
Verdine, GL .
CURRENT BIOLOGY, 1998, 8 (07) :393-403
[7]   Structure and potential mutagenicity of new hydantoin products from guanosine and 8-oxo-7,8-dihydroguanine oxidation by transition metals [J].
Burrows, CJ ;
Muller, JG ;
Kornyushyna, O ;
Luo, WC ;
Duarte, V ;
Leipold, MD ;
David, SS .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2002, 110 :713-717
[8]   Hydroxyl radicals and DNA base damage [J].
Cadet, J ;
Delatour, T ;
Douki, T ;
Gasparutto, D ;
Pouget, JP ;
Ravanat, JL ;
Sauvaigo, S .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 1999, 424 (1-2) :9-21
[9]   Direct visualization of a DNA glycosylase searching for damage [J].
Chen, LW ;
Haushalter, KA ;
Lieber, CM ;
Verdine, GL .
CHEMISTRY & BIOLOGY, 2002, 9 (03) :345-350
[10]   Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours [J].
Chevillard, S ;
Radicella, JP ;
Levalois, C ;
Lebeau, J ;
Poupon, MF ;
Oudard, S ;
Dutrillaux, B ;
Boiteux, S .
ONCOGENE, 1998, 16 (23) :3083-3086