Probe selection for high-density oligonucleotide arrays

被引:95
作者
Mei, R [1 ]
Hubbell, E [1 ]
Bekiranov, S [1 ]
Mittmann, M [1 ]
Christians, FC [1 ]
Shen, MM [1 ]
Lu, G [1 ]
Fang, J [1 ]
Liu, WM [1 ]
Ryder, T [1 ]
Kaplan, P [1 ]
Kulp, D [1 ]
Webster, TA [1 ]
机构
[1] Affymetrix Inc, Santa Clara, CA 95051 USA
关键词
design; modeling; microarray design;
D O I
10.1073/pnas.1534744100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-density oligonucleotide microarrays enable simultaneous mon toring of expression levels of tens of thousands of transcripts. For accurate detection and quantitation of transcripts in the presence of cellular mRNA, it is essential to design microarrays whose oligonucleotide probes produce hybridization intensities that accurately reflect the concentration of original mRNA. We present a model-based approach that predicts optimal probes by using sequence and empirical information. We constructed a thermodynamic model for hybridization behavior and determined the influence of empirical factors on the effective fitting parameters. We designed Affymetrix GeneChip probe arrays that contained all 25-mer probes for hundreds of human and yeast transcripts and collected data over a 4,000-fold concentration range. Multiple linear regression models were built to predict hybridization intensities! of each probe at given target concentrations, and each inter city profile is summarized by a probe response metric. We selected probe sets to represent each transcript that were optimize I with respect to responsiveness, independence (degree to which probe sequences are nonoverlapping), and uniqueness (lack of similarity to sequences in the expressed genomic background). We 5 how that this approach is capable of selecting probes with high sensitivity and specificity for high-density oligonucleotide array,
引用
收藏
页码:11237 / 11242
页数:6
相关论文
共 17 条
[1]  
[Anonymous], 2000, Nucleic Acids: Structures, Properties, and Functions
[2]  
Bloomfield V.A., 2000, NUCL ACIDS STRUCTURE, P259
[3]  
BOX GEP, 1978, STAT EXP INTRO DESIG
[4]  
FORMAN JE, 1998, MOL MODELING NUCL AC
[5]   Strategies for mutational analysis of the large multiexon ATM gene using high-density oligonucleotide arrays [J].
Hacia, JC ;
Sun, B ;
Hunt, N ;
Edgemon, K ;
Mosbrook, D ;
Robbins, C ;
Fodor, SPA ;
Tagle, DA ;
Collins, FS .
GENOME RESEARCH, 1998, 8 (12) :1245-1258
[6]  
Hastie T, 2008, The elements of statistical learning, Vsecond, DOI DOI 10.1007/978-0-387-21606-5
[7]   Absolute mRNA concentrations from sequence-specific calibration of oligonucleotide arrays [J].
Hekstra, D ;
Taussig, AR ;
Magnasco, M ;
Naef, F .
NUCLEIC ACIDS RESEARCH, 2003, 31 (07) :1962-1968
[8]   Initial sequencing and analysis of the human genome [J].
Lander, ES ;
Int Human Genome Sequencing Consortium ;
Linton, LM ;
Birren, B ;
Nusbaum, C ;
Zody, MC ;
Baldwin, J ;
Devon, K ;
Dewar, K ;
Doyle, M ;
FitzHugh, W ;
Funke, R ;
Gage, D ;
Harris, K ;
Heaford, A ;
Howland, J ;
Kann, L ;
Lehoczky, J ;
LeVine, R ;
McEwan, P ;
McKernan, K ;
Meldrim, J ;
Mesirov, JP ;
Miranda, C ;
Morris, W ;
Naylor, J ;
Raymond, C ;
Rosetti, M ;
Santos, R ;
Sheridan, A ;
Sougnez, C ;
Stange-Thomann, N ;
Stojanovic, N ;
Subramanian, A ;
Wyman, D ;
Rogers, J ;
Sulston, J ;
Ainscough, R ;
Beck, S ;
Bentley, D ;
Burton, J ;
Clee, C ;
Carter, N ;
Coulson, A ;
Deadman, R ;
Deloukas, P ;
Dunham, A ;
Dunham, I ;
Durbin, R ;
French, L .
NATURE, 2001, 409 (6822) :860-921
[9]   Array of hope [J].
Lander, ES .
NATURE GENETICS, 1999, 21 (Suppl 1) :3-4
[10]   Selection of optimal DNA oligos for gene expression arrays [J].
Li, FG ;
Stormo, GD .
BIOINFORMATICS, 2001, 17 (11) :1067-1076