Role of Ca2+-stimulated adenylyl cyclases in LTP and memory formation

被引:107
作者
Poser, S [1 ]
Storm, DR [1 ]
机构
[1] Univ Washington, Dept Pharmacol, Seattle, WA 98195 USA
关键词
memory; cAMP/Ca2+ response element-binding protein; cAMP/Ca2+ response element; transcription; cAMP; Erk/Map kinase; adenylyl cyclase; calmodulin; neuroplasticity; calcium;
D O I
10.1016/S0736-5748(00)00094-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Studies with invertebrates and vertebrates have strongly implicated the CREB/CRE transcriptional pathway in long-term memory (LTM) and transcriptionally-dependent L-LTP. It is hypothesized that LTM and L-LTP are both dependent upon a Ca2+ signal generated through activation of NMDA receptors. This review discusses evidence that Ca2+ signals generated through activation of NMDA receptors coactivate the Erk/MAP kinase and cAMP signal transduction pathways. It is hypothesized that activation of these two regulatory pathways increases the transcription of a family of genes through the CREB/CRE transcriptional pathway. Gene disruption studies have shown that Ca2+ activated adenylyl cyclases play a critical role in generating the cAMP signal required for LTM and L-LTP. Although cAMP may be required for several events in this complex signal transduction cascade, one of the major roles of cAMP may be to support nuclear translocation of Erk/MAP kinase in hippocampal neurons. (C) 2001 ISDN. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:387 / 394
页数:8
相关论文
共 87 条
[1]   Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory [J].
Abel, T ;
Nguyen, PV ;
Barad, M ;
Deuel, TAS ;
Kandel, ER .
CELL, 1997, 88 (05) :615-626
[2]   The MAPK cascade is required for mammalian associative learning [J].
Atkins, CM ;
Selcher, JC ;
Petraitis, JJ ;
Trzaskos, JM ;
Sweatt, JD .
NATURE NEUROSCIENCE, 1998, 1 (07) :602-609
[3]   STIMULATION OF PROTEIN TYROSINE PHOSPHORYLATION BY NMDA RECEPTOR ACTIVATION [J].
BADING, H ;
GREENBERG, ME .
SCIENCE, 1991, 253 (5022) :912-914
[5]   AROUSAL AND CONVERSION OF SHORT-TERM TO LONG-TERM MEMORY [J].
BARONDES, SH ;
COHEN, HD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1968, 61 (03) :923-&
[6]  
Barth AL, 2000, J NEUROSCI, V20, P4206
[7]   CREB phosphorylation and dephosphorylation: A Ca2(+)- and stimulus duration-dependent switch for hippocampal gene expression [J].
Bito, H ;
Deisseroth, K ;
Tsien, RW .
CELL, 1996, 87 (07) :1203-1214
[8]   LONG-LASTING POTENTIATION OF SYNAPTIC TRANSMISSION IN DENTATE AREA OF ANESTHETIZED RABBIT FOLLOWING STIMULATION OF PERFORANT PATH [J].
BLISS, TVP ;
LOMO, T .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 232 (02) :331-356
[9]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[10]   DEFICIENT LONG-TERM-MEMORY IN MICE WITH A TARGETED MUTATION OF THE CAMP-RESPONSIVE ELEMENT-BINDING PROTEIN [J].
BOURTCHULADZE, R ;
FRENGUELLI, B ;
BLENDY, J ;
CIOFFI, D ;
SCHUTZ, G ;
SILVA, AJ .
CELL, 1994, 79 (01) :59-68