Structure/function analysis of tristetraprolin (TTP): p38 stress-activated protein kinase and lipopolysaccharide stimulation do not alter TTP function'

被引:49
作者
Rigby, WFC
Roy, K
Collins, J
Rigby, S
Connolly, JE
Bloch, DB
Brooks, SA
机构
[1] Vet Affairs Med Ctr, White River Jct, VT 05009 USA
[2] Dartmouth Coll, Dept Med, Lebanon, NH 03756 USA
[3] Dartmouth Coll, Dept Microbiol & Immunol, Lebanon, NH 03756 USA
[4] Baylor Inst Immunol Res, Dallas, TX 75204 USA
[5] Harvard Univ, Sch Med, Dept Med, Boston, MA 02114 USA
[6] Massachusetts Gen Hosp, Gen Med Serv, Ctr Immunol & Inflammatory Dis, Boston, MA 02114 USA
关键词
D O I
10.4049/jimmunol.174.12.7883
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Tristetraprolin (TTP) is the only trans-acting factor shown to be capable of regulating AU-rich element-dependent mRNA turnover at the level of the intact animal; however, the mechanism by which TTP mediated RNA instability is unknown. Using an established model system, we performed structure/function analysis with TTP as well as examined the current hypothesis that TTP function is regulated by p38-MAPKAP kinase 2 (MK2) activation. Deletion of either the N- or C-terminal domains inhibited TTP function. Extensive mutagenesis, up to 16%, of serines and threonines, some of which were predicted to mediate proteasomal targeting, did not alter human TTP function. Mutation of the conserved MK2 phosphorylation sites enhanced human TTP function in both resting and p38-stress-activated protein kinase-MK2-activated cells. However, p38-stress-activated protein kinase-MK2 activation did not alter the activity of either wild-type or mutant TTP. TTP localized to the stress granules, with arsenite treatment reducing this localization. In contrast, arsenite treatment enhanced stress granule localization of the MK2 mutant, consistent with the involvement of additional pathways regulating this event. Finally, we determined that, in response to LPS stimulation, human TTP moves onto the polysomes, and this movement occurs in the absence of 14-3-3. Taken together, these data indicate that, although p38 activation alters TTP entry into the stress granule, it does not alter TTP function. Moreover, the interaction of TTP with 14-3-3, which may limit entry into the stress granule, is not involved in the downstream message stabilization events.
引用
收藏
页码:7883 / 7893
页数:11
相关论文
共 38 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   THE BIOLOGY OF CACHECTIN/TNF - A PRIMARY MEDIATOR OF THE HOST RESPONSE [J].
BEUTLER, B ;
CERAMI, A .
ANNUAL REVIEW OF IMMUNOLOGY, 1989, 7 :625-655
[3]  
BRIDGES D, 2004, SCI STKE, pRE10
[4]   The role of mRNA turnover in the regulation of tristetraprolin expression: Evidence for an extracellular signal-regulated kinase-specific, AU-Rich element-dependent, autoregulatory pathway [J].
Brooks, SA ;
Connolly, JE ;
Rigby, WFC .
JOURNAL OF IMMUNOLOGY, 2004, 172 (12) :7263-7271
[5]   Analysis of the function, expression, and subcellular distribution of human tristetraprolin [J].
Brooks, SA ;
Connolly, JE ;
Diegel, RJ ;
Fava, RA ;
Rigby, WFC .
ARTHRITIS AND RHEUMATISM, 2002, 46 (05) :1362-1370
[6]   Expression and purification of recombinant tristetraprolin that can bind to tumor necrosis factor-α mRNA and serve as a substrate for mitogen-activated protein kinases [J].
Cao, HP ;
Dzineku, F ;
Blackshear, PJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2003, 412 (01) :106-120
[7]   Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin [J].
Carballo, E ;
Lai, WS ;
Blackshear, PJ .
SCIENCE, 1998, 281 (5379) :1001-1005
[8]   Decreased sensitivity of tristetraprolin-deficient cells to p38 inhibitors suggests the involvement of tristetraprolin in the p38 signaling pathway [J].
Carballo, E ;
Cao, HP ;
Lai, WS ;
Kennington, EA ;
Campbell, D ;
Blackshear, PJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (45) :42580-42587
[9]   AU binding proteins recruit the exosome to degrade ARE-containing mRNAs [J].
Chen, CY ;
Gherzi, R ;
Ong, SE ;
Chan, EKL ;
Raijmakers, R ;
Pruijn, GJM ;
Stoecklin, G ;
Moroni, C ;
Mann, M ;
Karin, M .
CELL, 2001, 107 (04) :451-464
[10]   MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding [J].
Chrestensen, CA ;
Schroeder, MJ ;
Shabanowitz, J ;
Hunt, DF ;
Pelo, JW ;
Worthington, MT ;
Sturgill, TW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (11) :10176-10184