Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis

被引:234
作者
Ferreras, JA
Ryu, JS
Di Lello, F
Tan, DS
Quadri, LEN
机构
[1] Cornell Univ, Weill Med Coll, Dept Microbiol & Immunol, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Mol Pharmacol & Chem Program, New York, NY 10021 USA
[3] Mem Sloan Kettering Canc Ctr, Tri Inst Res Program, New York, NY 10021 USA
关键词
D O I
10.1038/nchembio706
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mycobacterium tuberculosis and Yersinia pestis, the causative agents of tuberculosis and plague, respectively, are pathogens with serious ongoing impact on global public health(1,2) and potential use as agents of bioterrorism(3). Both pathogens have iron acquisition systems based on siderophores, secreted iron-chelating compounds with extremely high Fe3+ affinity(4,5). Several lines of evidence suggest that siderophores have a critical role in bacterial iron acquisition inside the human host(6-9), where the free iron concentration is well below that required for bacterial growth and virulence(10). Thus, siderophore biosynthesis is an attractive target in the development of new antibiotics to treat tuberculosis and plague(2,5,8,11). In particular, such drugs, alone or as part of combination therapies, could provide a valuable new line of defense against intractable multiple-drug-resistant infections. Here, we report the design, synthesis and biological evaluation of a mechanism-based inhibitor of domain salicylation enzymes required for siderophore biosynthesis in M. tuberculosis and Y. pestis. This new antibiotic inhibits siderophore biosynthesis and growth of M. tuberculosis and Y. pestis under iron-limiting conditions.
引用
收藏
页码:29 / 32
页数:4
相关论文
共 27 条
[1]  
[Anonymous], 2000, MMWR Recomm Rep, V49, P1
[2]  
BARCLAY R, 1988, J GEN MICROBIOL, V134, P771
[3]   Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis [J].
Bearden, SW ;
Fetherston, JD ;
Perry, RD .
INFECTION AND IMMUNITY, 1997, 65 (05) :1659-1668
[4]  
Brodin P, 2005, TUBERCULOSIS AND THE TUBERCLE BACILLUS, P143
[5]   A FACILE SYNTHESIS OF ASCAMYCIN AND RELATED ANALOGS [J].
CASTROPICHEL, J ;
GARCIALOPEZ, MT ;
DELASHERAS, FG .
TETRAHEDRON, 1987, 43 (02) :383-389
[6]  
Copeland R. A, 2000, ENZYMES PRACTICAL IN, P305
[7]   Genetics and assembly line enzymology of siderophore biosynthesis in bacteria [J].
Crosa, JH ;
Walsh, CT .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2002, 66 (02) :223-+
[8]   The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide [J].
Darwin, KH ;
Ehrt, S ;
Gutierrez-Ramos, JC ;
Weich, N ;
Nathan, CF .
SCIENCE, 2003, 302 (5652) :1963-1966
[9]   The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages [J].
De Voss, JJ ;
Rutter, K ;
Schroeder, BG ;
Su, H ;
Zhu, YQ ;
Barry, CE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (03) :1252-1257
[10]   Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases [J].
Finking, R ;
Neumüller, A ;
Solsbacher, J ;
Konz, D ;
Kretzschmar, G ;
Schweitzer, M ;
Krumm, T ;
Marahiel, MA .
CHEMBIOCHEM, 2003, 4 (09) :903-906