Optimal regression designs in the presence of random block effects

被引:29
作者
Atkins, JE [1 ]
Cheng, CS [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
A-optimality; approximate design; D-optimality; equivalence theorem;
D O I
10.1016/S0378-3758(98)00189-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A- and D-optimal regression designs under random block-effects models are considered. We first identify certain situations where D- and A-optimal designs do not depend on the intra-block correlation and can be obtained easily from the optimal designs under uncorrelated models. For example, for quadratic regression on [-1, 1], this covers D-optimal designs when the block size is a multiple of 3 and A-optimal designs when the block size is a multiple of 4. In general, the optimal designs depend on the intra-block correlation. For quadratic regression, we provide expressions for D-optimal designs for any block size. A-optimal designs with blocks of size 2 for quadratic regression are also obtained. In all the cases considered, robust designs which do not depend on the intrablock correlation can be constructed. (C) 1999 Elsevier Science B.V. All rights reserved. AMS classification: 62K05.
引用
收藏
页码:321 / 335
页数:15
相关论文
共 7 条
[1]  
[Anonymous], OPTIMAL DESIGN EXPT
[2]  
ATKINS J, 1994, THESIS U CALIFORNIA
[3]  
CHASALOW S, 1992, THESIS U CALIFORNIA
[4]  
CHENG CS, 1995, STAT SINICA, V5, P485
[5]  
Fedorov VV., 1972, THEORY OPTIMAL EXPT
[6]   GENERAL EQUIVALENCE THEORY FOR OPTIMUM DESIGNS (APPROXIMATE THEORY) [J].
KIEFER, J .
ANNALS OF STATISTICS, 1974, 2 (05) :849-879
[7]  
Kiefer J, 1960, Canadian Journal of Mathematics, V12, P363, DOI [DOI 10.4153/CJM-1960-030-4, 10.4153/CJM-1960-030-4]