Automatic differentiation and spectral projected gradient methods for optimal control problems

被引:26
作者
Birgin, EG
Evtushenko, YG
机构
[1] Univ Estadual Campinas, IMECC, Dept Appl Math, BR-13081970 Campinas, SP, Brazil
[2] Russian Acad Sci, Ctr Comp, Moscow 117967, Russia
基金
巴西圣保罗研究基金会; 俄罗斯基础研究基金会;
关键词
automatic differentiation; spectral projected gradient; nonmonotone line search; optimal control problem; software for optimal control problems; Runge-Kutta integration methods;
D O I
10.1080/10556789808805707
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Automatic differentiation and nonmonotone spectral projected gradient techniques are used for solving optimal control problems. The original problem is reduced to a nonlinear programming one using general Runge-Kutta integration formulas. Canonical formulas which use a fast automatic differentiation strategy are given to compute derivatives of the objective function. On the basis of this approach, codes for solving optimal control problems are developed and some numerical results are presented.
引用
收藏
页码:125 / 146
页数:22
相关论文
共 35 条
[1]   COMPUTING LARGE SPARSE JACOBIAN MATRICES USING AUTOMATIC DIFFERENTIATION [J].
AVERICK, BM ;
MORE, JJ ;
BISCHOF, CH ;
CARLE, A ;
GRIEWANK, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02) :285-294
[2]  
BARTHOLOMEWBIGG.M, 1994, OPTIMIZATION METHODS, V4, P47
[3]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[4]   GOLDSTEIN-LEVITIN-POLYAK GRADIENT PROJECTION METHOD [J].
BERTSEKAS, DP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (02) :174-183
[5]  
BIRGIN EG, 1997, 9297 RP IMECCUNICAMP
[6]  
BIRGIN EG, 1998, THESIS IMECUNICAMP B
[7]  
BISCHOF CH, 1992, ADIFOR FORTRAN SYSTE
[8]  
Butcher J.C., 1964, J. Aust. Math. Soc, V4, P179, DOI [10.1017/S1446788700023387, DOI 10.1017/S1446788700023387]
[9]   CORRECTION [J].
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :764-767
[10]  
DINIZEHRHARDT MA, 1997, INT WORKSH NUM LIN A, P23