A review of water flooding issues in the proton exchange membrane fuel cell

被引:864
作者
Li, Hui [1 ]
Tang, Yanghua [1 ]
Wang, Zhenwei [1 ]
Shi, Zheng [1 ]
Wu, Shaohong [1 ]
Song, Datong [1 ]
Zhang, Jianlu [1 ]
Fatih, Khalid [1 ]
Zhang, Jiujun [1 ]
Wang, Haijiang [1 ]
Liu, Zhongsheng [1 ]
Abouatallah, Rami [2 ]
Mazza, Antonio [2 ,3 ]
机构
[1] Natl Res Council Canada, Inst Fuel Cell Innovat, Vancouver, BC V6T 1Z4, Canada
[2] Hydrogenics, Mississauga, ON L5R 1B8, Canada
[3] Univ Ontario Inst Technol, Sch Energy Syst & Nucl Sci, Oshawa, ON L1H 7K4, Canada
关键词
proton exchange membrane (PEM) fuel cell; water management; water flooding; gas diffusion layer (GDL); cathode catalyst layer (CCL); bipolar flow field plate;
D O I
10.1016/j.jpowsour.2007.12.068
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have reviewed more than 100 references that are related to water management in proton exchange membrane (PEM) fuel cells, with a particular focus on the issue of water flooding, its diagnosis and mitigation. It was found that extensive work has been carried out on the issues of flooding during the last two decades, including prediction through numerical modeling, detection by experimental measurements, and mitigation through the design of cell components and manipulating the operating conditions. Two classes of strategies to mitigate flooding have been developed. The first is based on system design and engineering, which is often accompanied by significant parasitic power loss. The second class is based on membrane electrode assembly (MEA) design and engineering, and involves modifying the material and structural properties of the gas diffusion layer (GDL), cathode catalyst layer (CCL) and membrane to function in the presence of liquid water. In this review, several insightful directions are also suggested for future investigation. Crown Copyright (C) 2007 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 117
页数:15
相关论文
共 150 条
[1]  
ALLEN JS, 2006, ECS T, V3, P1197
[2]   Effects of the cathode gas diffusion layer characteristics on the performance of polymer electrolyte fuel cells [J].
Antolini, E ;
Passos, RR ;
Ticianelli, EA .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2002, 32 (04) :383-388
[3]   Experimental investigation of the role of a microporous layer on the water transport and performance of a PEM fuel cell [J].
Atiyeh, Hasan K. ;
Karan, Kunal ;
Peppley, Brant ;
Phoenix, Aaron ;
Halliop, Ela ;
Pharoah, Jon .
JOURNAL OF POWER SOURCES, 2007, 170 (01) :111-121
[4]   Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system - I. Control-oriented modeling [J].
Bao, Cheng ;
Ouyang, Minggao ;
Yi, Baolian .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (13) :1879-1896
[5]   Transfer processes in PEM fuel cell: Influence of electrode structure [J].
Baranov, IE ;
Grigoriev, SA ;
Ylitalo, D ;
Fateev, VN ;
Nikolaev, II .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (02) :203-210
[6]   Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells [J].
Barbir, F ;
Gorgun, H ;
Wang, X .
JOURNAL OF POWER SOURCES, 2005, 141 (01) :96-101
[7]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[8]   Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers [J].
Bazylak, A. ;
Sinton, D. ;
Liu, Z. -S. ;
Djilali, N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :784-792
[9]   Neutron imaging technique for in situ measurement of water transport gradients within Nafion in polymer electrolyte fuel cells [J].
Bellows, RJ ;
Lin, MY ;
Arif, M ;
Thompson, AK ;
Jacobson, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :1099-1103
[10]   Water management in PEM fuel cells [J].
Berg, P ;
Promislow, K ;
St Pierre, J ;
Stumper, J ;
Wetton, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (03) :A341-A353