Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers

被引:143
作者
Liu, YW
Cseresnyés, Z
Randall, WR
Schneider, MF
机构
[1] Univ Maryland, Sch Med, Dept Biochem & Mol Biol, Baltimore, MD 21201 USA
[2] Univ Maryland, Sch Med, Dept Pharmacol & Expt Therapeut, Baltimore, MD 21201 USA
关键词
cell nucleus; skeletal muscle; NFAT; cultured cells; electrical stimulation;
D O I
10.1083/jcb.200103020
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Transcription factor nuclear factor of activated T cells NFATc (NFATc1, NFAT2) may contribute to slow-twitch skeletal muscle fiber type-specific gene expression. Green fluorescence protein (GFP) or FLAG fusion proteins of either wild-type or constitutively active mutant NFATc [NFATc(S-->A)] were expressed in cultured adult mouse skeletal muscle fibers from flexor digitorum brevis (predominantly fast-twitch). Unstimulated fibers expressing NFATc(S-->A) exhibited a distinct intranuclear pattern of NFATc foci. In unstimulated fibers expressing NFATc-GFP, fluorescence was localized at the sarcomeric z-lines and absent from nuclei. Electrical stimulation using activity patterns typical of slow-twitch muscle, either continuously at 10 Hz or in 5-s trains at 10 Hz every 50 s, caused cyclosporin A-sensitive appearance of fluorescent foci of NFATc-GFP in all nuclei. Fluorescence of nuclear foci increased during the first hour of stimulation and then remained constant during a second hour of stimulation. Kinase inhibitors and ionomycin caused appearance of nuclear foci of NFATc-GFP without electrical stimulation. Nuclear translocation of NFATc-GFP did not occur with either continuous 1 Hz stimulation or with the fast-twitch fiber activity pattern of 0.1-s trains at 50 Hz every 50 s. The stimulation pattern-dependent nuclear translocation of NFATc demonstrated here could thus contribute to fast-twitch to slow-twitch fiber type transformation.
引用
收藏
页码:27 / 39
页数:13
相关论文
共 59 条
[1]   Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells [J].
Abbott, KL ;
Friday, BB ;
Thaloor, D ;
Murphy, TJ ;
Pavlath, GK .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (10) :2905-2916
[2]   Activity-dependent induction of slow myosin gene expression in isolated fast-twitch mouse muscle [J].
BartonDavis, ER ;
LaFramboise, WA ;
Kushmerick, MJ .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1996, 271 (04) :C1409-C1414
[3]   Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction [J].
Beals, CR ;
Clipstone, NA ;
Ho, SN ;
Crabtree, GR .
GENES & DEVELOPMENT, 1997, 11 (07) :824-834
[4]   PROPERTIES OF ISOLATED ADULT RAT MUSCLE-FIBERS MAINTAINED IN TISSUE-CULTURE [J].
BEKOFF, A ;
BETZ, W .
JOURNAL OF PHYSIOLOGY-LONDON, 1977, 271 (02) :537-&
[5]   Calcineurin co-regulates contractile and metabolic components of slow muscle phenotype [J].
Bigard, X ;
Sanchez, H ;
Zoll, J ;
Mateo, P ;
Rousseau, V ;
Veksler, V ;
Ventura-Clapier, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (26) :19653-19660
[6]  
Calvo S, 1999, MOL CELL BIOL, V19, P515
[7]   Calcium transients in single fibers of low-frequency stimulated fast-twitch muscle of rat [J].
Carroll, S ;
Nicotera, P ;
Pette, D .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1999, 277 (06) :C1122-C1129
[8]   Decay of calcium transients after electrical stimulation in rat fast- and slow-twitch skeletal muscle fibres [J].
Carroll, SL ;
Klein, MG ;
Schneider, MF .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 501 (03) :573-588
[9]   A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type [J].
Chin, ER ;
Olson, EN ;
Richardson, JA ;
Yano, Q ;
Humphries, C ;
Shelton, JM ;
Wu, H ;
Zhu, WG ;
Bassel-Duby, R ;
Williams, RS .
GENES & DEVELOPMENT, 1998, 12 (16) :2499-2509
[10]   Generic signals and specific outcomes:: Signaling through Ca2+, calcineurin, and NF-AT [J].
Crabtree, GR .
CELL, 1999, 96 (05) :611-614