An overview of fuzzy modeling for control

被引:181
作者
Babuska, R
Verbruggen, HB
机构
[1] Department of Electrical Engineering, Control Laboratory, Delft University of Technology, 2600 GA Delft
关键词
fuzzy modeling; nonlinear modeling; identification; nonlinear control; fuzzy clustering; learning;
D O I
10.1016/0967-0661(96)00175-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article some aspects of fuzzy modeling are discussed in connection with nonlinear system identification and control design. Methods for constructing fuzzy models from process data are reviewed, and attention is paid to the choice of a suitable fuzzy model structure for the identification task. Some approaches to control design based on a fuzzy model are outlined.
引用
收藏
页码:1593 / 1606
页数:14
相关论文
共 63 条
  • [1] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [2] ALI S, 1995, P 14 EUR ANN C HUM D
  • [3] [Anonymous], 1995, Fuzzy Sets Engineering
  • [4] [Anonymous], 1995, THESIS DELFT U TECHN
  • [5] [Anonymous], 1995, PROC 3 EUROPEAN C IN
  • [6] [Anonymous], P IEEE C DEC CONTR S
  • [7] BABUSKA R, 1994, PROCEEDINGS OF THE THIRD IEEE CONFERENCE ON FUZZY SYSTEMS - IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, VOLS I-III, P859, DOI 10.1109/FUZZY.1994.343848
  • [8] Babuska R., 1995, Proceedings of the Third European Control Conference. ECC 95, P1207
  • [9] BABUSKA R, 1996, MULTIPLE MODEL APPRO
  • [10] BABUSKA R, 1996, 13 IFAC WORLD C SAN