Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory

被引:133
作者
Kyotani, T [1 ]
Tomita, A [1 ]
机构
[1] Tohoku Univ, Inst Chem React Sci, Sendai, Miyagi 9808577, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 1999年 / 103卷 / 17期
关键词
D O I
10.1021/jp9845928
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An attempt was made to analyze the reaction of carbon with NO or N2O by using an ab initio molecular orbital theory. This method allows the simulation of the chemisorption process of these gas molecules on zigzag and armchair edge sites of carbon. It was found that NO adsorption with the N atom down is more thermally favorable than the adsorption with the O atom down, while the O down mode is more favorable than the N down one for N2O adsorption because the former process releases a stable N-2 molecule to form a surface oxygen complex. The chemisorption of NO or N2O with its bond axis parallel to the edge line gave the most stable chemisorbed species. The presence of surface oxygen complexes (quinone-type carbonyl group) on the edge decreases the strength of some bonds in NO- and N2O-chemisorbed species and consequently lowers their thermal stability. Furthermore, the N-2 formation process in the C-NO/N2O reaction was analyzed and possible N-2 formation routes were proposed. The routes predicted by the molecular orbital theory were compared with the previous experimental results.
引用
收藏
页码:3434 / 3441
页数:8
相关论文
共 28 条
[1]   A review of the kinetics of the nitric oxide carbon reaction [J].
Aarna, I ;
Suuberg, EM .
FUEL, 1997, 76 (06) :475-491
[2]   Role of N-containing surface species on NO reduction by carbon [J].
Chambrion, P ;
Kyotani, T ;
Tomita, A .
ENERGY & FUELS, 1998, 12 (02) :416-421
[3]   A study of the C-NO reaction by using isotopically labelled C and NO [J].
Chambrion, P ;
Orikasa, H ;
Suzuki, T ;
Kyotani, T ;
Tomita, A .
FUEL, 1997, 76 (06) :493-498
[4]   XPS of nitrogen-containing functional groups formed during the C-NO reaction [J].
Chambrion, P ;
Suzuki, T ;
Zhang, ZG ;
Kyotani, T ;
Tomita, A .
ENERGY & FUELS, 1997, 11 (03) :681-685
[5]  
Chambrion P, 1998, TWENTY-SEVENTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, P3053
[6]   Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry [J].
Chen, N ;
Yang, RT .
CARBON, 1998, 36 (7-8) :1061-1070
[7]   Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O [J].
Chen, SG ;
Yang, RT .
ENERGY & FUELS, 1997, 11 (02) :421-427
[8]   THE ACTIVE SURFACE SPECIES IN ALKALI-CATALYZED CARBON GASIFICATION - PHENOLATE (C-O-M) GROUPS VS CLUSTERS (PARTICLES) [J].
CHEN, SG ;
YANG, RT .
JOURNAL OF CATALYSIS, 1993, 141 (01) :102-113
[9]   A NEW SURFACE OXYGEN COMPLEX ON CARBON - TOWARD A UNIFIED MECHANISM FOR CARBON GASIFICATION REACTIONS [J].
CHEN, SG ;
YANG, RT ;
KAPTEIJN, F ;
MOULIJN, JA .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1993, 32 (11) :2835-2840
[10]  
De Soete G.G, 1991, 23 S INT COMB COMB I, V23, P1257, DOI DOI 10.1016/S0082-0784(06)80388-7