Tensegrity-based mechanosensing from macro to micro

被引:306
作者
Ingber, Donald E. [1 ,2 ,3 ]
机构
[1] Childrens Hosp, Dept Surg, Vasc Biol Program, Boston, MA 02115 USA
[2] Childrens Hosp, Dept Pathol, Vasc Biol Program, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Boston, MA 02115 USA
基金
美国国家航空航天局; 美国国家卫生研究院; 美国国家科学基金会;
关键词
mechanotransduction; tensegrity; cytoskeleton; cell mechanics; integrin; tension;
D O I
10.1016/j.pbiomolbio.2008.02.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This article is a Summary of a lecture on cellular rnechanotransduction that was presented at a symposium on "Cardiac Mechano-Electric Feedback and Arrhythmias" that convened at Oxford, England in April 2007. Although critical mechanosensitive molecules and cellular components, such as integrins, stretch-activated ion channels, and cytoskeletal filaments, have been shown to contribute to the response by which cells convert mechanical signals into a biochemical response, little is known about how they function in the structural context of living cells, tissues and organs to produce orchestrated changes in cell behavior in response to stress. Here, studies are reviewed that suggest our bodies use structural hierarchies (systems within systems) composed of interconnected extracellular matrix and cytoskeletal networks that span from the macroscale to the nanoscale to focus stresses on specific mechanotransducer molecules. A key feature of these networks is that they are in a state of isometric tension (i.e., experience a tensile prestress), which ensures that various molecular-scale mechanochemical transduction mechanisms proceed simultaneously and produce a concerted response. These features of living architecture are the same principles that govern tensegrity (tensional integrity) architecture, and mathematical models based on tensegrity are beginning to provide new and useful descriptions of living materials, including mammalian cells. This article reviews how the use of tensegrity at multiple size scales in our bodies guides mechanical force transfer from the macro to the micro, as well as how it facilitates conversion of mechanical signals into changes in ion flux, molecular binding kinetics, signal transduction, gene transcription, cell fate switching and developmental patterning. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:163 / 179
页数:17
相关论文
共 97 条
[1]   Global cytoskeletal control of mechanotransduction in kidney epithelial cells [J].
Alenghat, FJ ;
Nauli, SM ;
Kolb, R ;
Zhou, J ;
Ingber, DE .
EXPERIMENTAL CELL RESEARCH, 2004, 301 (01) :23-30
[2]  
Alenghat Francis J, 2002, Sci STKE, V2002, ppe6, DOI 10.1126/stke.2002.119.pe6
[3]   MIGRATION AND PROLIFERATION OF ENDOTHELIAL CELLS IN PREFORMED AND NEWLY FORMED BLOOD-VESSELS DURING TUMOR ANGIOGENESIS [J].
AUSPRUNK, DH ;
FOLKMAN, J .
MICROVASCULAR RESEARCH, 1977, 14 (01) :53-65
[4]  
BERNFIELD MR, 1978, BIOL CHEM BASEMENT M, P137
[5]   Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement [J].
Brangwynne, Clifford P. ;
MacKintosh, Frederick C. ;
Kumar, Sanjay ;
Geisse, Nicholas A. ;
Talbot, Jennifer ;
Mahadevan, L. ;
Parker, Kevin K. ;
Ingber, Donald E. ;
Weitz, David A. .
JOURNAL OF CELL BIOLOGY, 2006, 173 (05) :733-741
[6]   Geometric determinants of directional cell motility revealed using microcontact printing [J].
Brock, A ;
Chang, E ;
Ho, CC ;
LeDuc, P ;
Jiang, XY ;
Whitesides, GM ;
Ingber, DE .
LANGMUIR, 2003, 19 (05) :1611-1617
[7]   INTERMEDIATE FILAMENTS MAY PREVENT BUCKLING OF COMPRESSIVELY LOADED MICROTUBULES [J].
BRODLAND, GW ;
GORDON, R .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1990, 112 (03) :319-321
[8]   Cardiomyocyte cultures with controlled macroscopic anisotropy - A model for functional electrophysiological studies of cardiac muscle [J].
Bursac, N ;
Parker, KK ;
Iravanian, S ;
Tung, L .
CIRCULATION RESEARCH, 2002, 91 (12) :E45-E54
[9]   Regulation of cytoskeletal mechanics and cell growth by myosin light chain phosphorylation [J].
Cai, S ;
Pestic-Dragovich, L ;
O'Donnell, ME ;
Wang, N ;
Ingber, D ;
Elson, E ;
De Lanerolle, P .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1998, 275 (05) :C1349-C1356
[10]   MOVEMENT AND SELF-CONTROL IN PROTEIN ASSEMBLIES - QUASI-EQUIVALENCE REVISITED [J].
CASPAR, DLD .
BIOPHYSICAL JOURNAL, 1980, 32 (01) :103-138