Superdiffusion in decoupled continuous time random walks

被引:13
作者
Budde, C [1 ]
Prato, D [1 ]
Ré, M [1 ]
机构
[1] Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5010 Cordoba, Argentina
关键词
D O I
10.1016/S0375-9601(01)00234-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Continuous time random walk models with decoupled waiting time density are studied. When the spatial one-jump probability density belongs to the Levy distribution type and the total time transition is exponential a generalized superdiffusive regime is established. This is verified by showing that the square width of the probability distribution (appropriately defined) grows as t(2/gamma) with 0 < gamma less than or equal to 2 when t --> infinity. An important connection of our results and those of Tsallis' nonextensive statistics is shown. The normalized q-expectation value of x(2) calculated with the corresponding probability distribution behaves exactly as t(2/gamma) in the asymptotic limit. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:309 / 312
页数:4
相关论文
共 19 条
[1]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[2]  
BATCHELOR GK, 1926, P R SOC LONDON SER A, V110, P709
[3]   TRANSPORT ASPECTS IN ANOMALOUS DIFFUSION - LEVY WALKS [J].
BLUMEN, A ;
ZUMOFEN, G ;
KLAFTER, J .
PHYSICAL REVIEW A, 1989, 40 (07) :3964-3974
[4]   UNIFIED THEORY OF RELATIVE TURBULENT-DIFFUSION [J].
GROSSMANN, S ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1984, 29 (03) :1358-1365
[5]   STOCHASTIC PATHWAY TO ANOMALOUS DIFFUSION [J].
KLAFTER, J ;
BLUMEN, A ;
SHLESINGER, MF .
PHYSICAL REVIEW A, 1987, 35 (07) :3081-3085
[6]  
Monin A. N., 1971, Statistical Fluid Mechanics, VII
[7]  
Monin AS, 1971, STAT FLUID MECH, V1
[8]  
MONTROLL E, 1979, FLUCTUATION PHENOMEN
[9]   RANDOM WALKS ON LATTICES .2. [J].
MONTROLL, EW ;
WEISS, GH .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (02) :167-+
[10]   ANOMALOUS DIFFUSION IN LIVING POLYMERS - A GENUINE LEVY FLIGHT [J].
OTT, A ;
BOUCHAUD, JP ;
LANGEVIN, D ;
URBACH, W .
PHYSICAL REVIEW LETTERS, 1990, 65 (17) :2201-2204