Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources

被引:132
作者
Kai, Fuu Ming [1 ]
Tyler, Stanley C. [1 ]
Randerson, James T. [1 ]
Blake, Donald R. [2 ]
机构
[1] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
ATMOSPHERIC METHANE; WATER MANAGEMENT; RICE FIELDS; EMISSIONS; BUDGET; CHINA; MODEL; GAS;
D O I
10.1038/nature10259
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atmospheric methane(CH4) increased through much of the twentieth century, but this trend gradually weakened until a stable state was temporarily reached around the turn of the millennium(1,2), after which levels increased once more(3). The reasons for the slowdown are incompletely understood, with past work identifying changes in fossil fuel, wetland and agricultural sources and hydroxyl (OH) sinks as important causal factors(1,4-8). Here we show that the late-twentieth century changes in the CH4 growth rates are best explained by reduced microbial sources in the Northern Hemisphere. Our results, based on synchronous time series of atmospheric CH4 mixing and C-13/C-12 ratios and a two-box atmospheric model, indicate that the evolution of the mixing ratio requires no significant change in Southern Hemisphere sources between 1984 and 2005. Observed changes in the interhemispheric difference of C-13 effectively exclude reduced fossil fuel emissions as the primary cause of the slowdown. The C-13 observations are consistent with long-term reductions in agricultural emissions or another microbial source within the Northern Hemisphere. Approximately half (51 +/- 18%) of the decrease in Northern Hemisphere CH4 emissions can be explained by reduced emissions from rice agriculture in Asia over the past three decades associated with increases in fertilizer application(9) and reductions in water use(10,11).
引用
收藏
页码:194 / 197
页数:4
相关论文
共 30 条
[1]  
[Anonymous], WORLD RIC STAT
[2]  
[Anonymous], 2008, WAT US STAT
[3]   Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data [J].
Bloom, A. Anthony ;
Palmer, Paul I. ;
Fraser, Annemarie ;
Reay, David S. ;
Frankenberg, Christian .
SCIENCE, 2010, 327 (5963) :322-325
[4]   Contribution of anthropogenic and natural sources to atmospheric methane variability [J].
Bousquet, P. ;
Ciais, P. ;
Miller, J. B. ;
Dlugokencky, E. J. ;
Hauglustaine, D. A. ;
Prigent, C. ;
Van der Werf, G. R. ;
Peylin, P. ;
Brunke, E. -G. ;
Carouge, C. ;
Langenfelds, R. L. ;
Lathiere, J. ;
Papa, F. ;
Ramonet, M. ;
Schmidt, M. ;
Steele, L. P. ;
Tyler, S. C. ;
White, J. .
NATURE, 2006, 443 (7110) :439-443
[5]   BIOGEOCHEMICAL ASPECTS OF ATMOSPHERIC METHANE [J].
Cicerone, R. ;
Oremland, R. .
GLOBAL BIOGEOCHEMICAL CYCLES, 1988, 2 (04) :299-327
[6]   Observational constraints on recent increases in the atmospheric CH4 burden [J].
Dlugokencky, E. J. ;
Bruhwiler, L. ;
White, J. W. C. ;
Emmons, L. K. ;
Novelli, P. C. ;
Montzka, S. A. ;
Masarie, K. A. ;
Lang, P. M. ;
Crotwell, A. M. ;
Miller, J. B. ;
Gatti, L. V. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[7]   Atmospheric methane levels off: Temporary pause or a new steady-state? [J].
Dlugokencky, EJ ;
Houweling, S ;
Bruhwiler, L ;
Masarie, KA ;
Lang, PM ;
Miller, JB ;
Tans, PP .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (19) :ASC5-1
[8]   Continuing decline in the growth rate of the atmospheric methane burden [J].
Dlugokencky, EJ ;
Masarie, KA ;
Lang, PM ;
Tans, PP .
NATURE, 1998, 393 (6684) :447-450
[9]   Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability [J].
Etheridge, DM ;
Steele, LP ;
Francey, RJ ;
Langenfelds, RL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D13) :15979-15993
[10]   Unexpected changes to the global methane budget over the past 2000 years [J].
Ferretti, DF ;
Miller, JB ;
White, JWC ;
Etheridge, DM ;
Lassey, KR ;
Lowe, DC ;
Meure, CMM ;
Dreier, MF ;
Trudinger, CM ;
van Ommen, TD ;
Langenfelds, RL .
SCIENCE, 2005, 309 (5741) :1714-1717