The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length

被引:341
作者
Schnabel, E
Journet, EP
de Carvalho-Niebel, F
Duc, G
Frugoli, J
机构
[1] Clemson Univ, Dept Genet Biochem & Life Sci Studies, Clemson, SC 29634 USA
[2] INRA, CNRS, Unite Mixte Rech, Lab Interact Plantes Microorganismes, F-31326 Castanet Tolosan, France
[3] INRA, Unite Rech Genet & Ecophysiol Legumineuses Graine, F-21065 Dijon, France
关键词
Medicago truncatula; nodule regulation; RLP1; SUNN; supernodulation;
D O I
10.1007/s11103-005-8102-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Four Medicago truncatula sunn mutants displayed shortened roots and hypernodulation under all conditions examined. The mutants, recovered in three independent genetic screens, all contained lesions in a leucine-rich repeat (LRR) receptor kinase. Although the molecular defects among alleles varied, root length and the extent of nodulation were not significantly different between the mutants. SUNN is expressed in shoots, flowers and roots. Although previously reported grafting experiments showed that the presence of the mutated SUNN gene in roots does not confer an obvious phenotype, expression levels of SUNN mRNA were reduced in sunn-1 roots. SUNN and the previously identified genes HAR1 (Lotus japonicus) and NARK (Glycine max) are orthologs based on gene sequence and synteny between flanking sequences. Comparison of related LRR receptor kinases determined that all nodulation autoregulation genes identified to date are the closest legume relatives of AtCLV1 by sequence, yet sunn, har and nark mutants do not display the fasciated clv phenotype. The M. truncatula region is syntenic with duplicated regions of Arabidopsis chromosomes 2 and 4, none of which harbor CLV1 or any other LRR receptor kinase genes. A novel truncated copy of the SUNN gene lacking a kinase domain, RLP1, is found immediately upstream of SUNN and like SUNN is expressed at a reduced level in sunn-1 roots.
引用
收藏
页码:809 / 822
页数:14
相关论文
共 58 条
[1]   GENETICS AND COMPARATIVE GROWTH-MORPHOLOGY OF FASCIATION IN SOYBEANS (GLYCINE MAX [L] MERR) [J].
ALBERTSEN, MC ;
CURRY, TM ;
PALMER, RG ;
LAMOTTE, CE .
BOTANICAL GAZETTE, 1983, 144 (02) :263-275
[2]   Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes [J].
Ane, JM ;
Kiss, GB ;
Riely, BK ;
Penmetsa, RV ;
Oldroyd, GED ;
Ayax, C ;
Lévy, J ;
Debellé, F ;
Baek, JM ;
Kalo, P ;
Rosenberg, C ;
Roe, BA ;
Long, SR ;
Dénarié, J ;
Cook, DR .
SCIENCE, 2004, 303 (5662) :1364-1367
[3]   Floral development of the model legume Medicago truncatula:: ontogeny studies as a tool to better characterize homeotic mutations [J].
Benloch, R ;
Navarro, C ;
Beltrán, JP ;
Cañas, LA .
SEXUAL PLANT REPRODUCTION, 2003, 15 (05) :231-241
[4]   Genes and signal molecules involved in the rhizobia-Leguminoseae symbiosis [J].
Bladergroen, MR ;
Spaink, HP .
CURRENT OPINION IN PLANT BIOLOGY, 1998, 1 (04) :353-359
[5]   Extensive duplication and reshuffling in the arabidopsis genome [J].
Blanc, G ;
Barakat, A ;
Guyot, R ;
Cooke, R ;
Delseny, I .
PLANT CELL, 2000, 12 (07) :1093-1101
[6]   thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase [J].
Bommert, P ;
Lunde, C ;
Nardmann, J ;
Vollbrecht, E ;
Running, M ;
Jackson, D ;
Hake, S ;
Werr, W .
DEVELOPMENT, 2005, 132 (06) :1235-1245
[7]   ISOLATION AND PROPERTIES OF SOYBEAN [GLYCINE-MAX (L) MERR] MUTANTS THAT NODULATE IN THE PRESENCE OF HIGH NITRATE CONCENTRATIONS [J].
CARROLL, BJ ;
MCNEIL, DL ;
GRESSHOFF, PM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (12) :4162-4166
[8]   A SUPERNODULATION AND NITRATE-TOLERANT SYMBIOTIC (NTS) SOYBEAN MUTANT [J].
CARROLL, BJ ;
MCNEIL, DL ;
GRESSHOFF, PM .
PLANT PHYSIOLOGY, 1985, 78 (01) :34-40
[9]   Pharmacological evidence that multiple phospholipid signaling pathways link rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, including Ca2+ spiking and specific ENOD gene expression [J].
Charron, D ;
Pingret, JL ;
Chabaud, M ;
Journet, EP ;
Barker, DG .
PLANT PHYSIOLOGY, 2004, 136 (03) :3582-3593
[10]   The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis [J].
Clark, SE ;
Williams, RW ;
Meyerowitz, EM .
CELL, 1997, 89 (04) :575-585