Modelling event-related responses in the brain

被引:228
作者
David, O [1 ]
Harrison, L [1 ]
Friston, KJ [1 ]
机构
[1] Wellcome Dept Imaging Neurosci, Funct Imaging Lab, London WC1N 3BG, England
基金
英国惠康基金;
关键词
electroencephalography; magnetoencephalography; neural networks; nonlinear dynamics; causal modelling;
D O I
10.1016/j.neuroimage.2004.12.030
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The aim of this work was to investigate the mechanisms that shape evoked electroencephalographic (EEG) and magneto-encephalographic (MEG) responses. We used a neuronally plausible model to characterise the dependency of response components on the models parameters. This generative model was a neural mass model of hierarchically arranged areas using three kinds of inter-area connections (forward, backward and lateral). We investigated how responses, at each level of a cortical hierarchy, depended on the strength of connections or coupling. Our strategy was to systematically add connections and examine the responses of each successive architecture. We did this in the context of deterministic responses and then with stochastic spontaneous activity. Our aim was to show, in a simple way, how event-related dynamics depend on extrinsic connectivity. To emphasise the importance of nonlinear interactions, we tried to disambiguate the components of event-related potentials (ERPs) or event-related fields (ERFs) that can be explained by a linear superposition of trial-specific responses and those engendered nonlinearly (e.g., by phase-resetting). Our key conclusions were; (i) when forward connections, mediating bottom-up or extrinsic inputs, are sufficiently strong, nonlinear mechanisms cause a saturation of excitatory interneuron responses. This endows the system with an inherent stability that precludes nondissipative population dynamics. (ii) The duration of evoked transients increases with the hierarchical depth or level of processing. (iii) When backward connections are added, evoked transients become more protracted, exhibiting damped oscillations. These are formally identical to late or endogenous components seen empirically. This suggests that late components are mediated by reentrant dynamics within cortical hierarchies. (iv) Bilateral connections produce similar effects to backward connections but can also mediate zero-lag phase-locking among areas. (v) Finally, with spontaneous activity, ERPs/ERFs can arise from two distinct mechanisms: For low levels of (stimulus related and ongoing) activity, the systems response conforms to a quasi-linear superposition of separable responses to the fixed and stochastic inputs. This is consistent with classical assumptions that motivate trial averaging to suppress spontaneous activity and disclose the ERP/ ERE However, when activity is sufficiently high, there are nonlinear interactions between the fixed and stochastic inputs. This interaction is expressed as a phase-resetting and represents a qualitatively different explanation for the ERP/ERF. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:756 / 770
页数:15
相关论文
共 66 条
[1]  
Abeles M., 1991, CORTICONICS
[2]   Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses [J].
Arieli, A ;
Sterkin, A ;
Grinvald, A ;
Aertsen, A .
SCIENCE, 1996, 273 (5283) :1868-1871
[3]   Electromagnetic brain mapping [J].
Baillet, S ;
Mosher, JC ;
Leahy, RM .
IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) :14-30
[4]  
Bas ~ar E, 1980, EEG BRAIN DYNAMICS R
[5]   Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics [J].
Breakspear, M ;
Terry, JR ;
Friston, KJ .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2003, 14 (04) :703-732
[6]   Nonlinear interdependence in neural systems: Motivation, theory, and relevance [J].
Breakspear, M ;
Terry, JR .
INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2002, 112 (10) :1263-1284
[7]   Nonlinear phase desynchronization in human electroencephalographic data [J].
Breakspear, M .
HUMAN BRAIN MAPPING, 2002, 15 (03) :175-198
[8]   Relating macroscopic measures of brain activity to fast, dynamic neuronal interactions [J].
Chawla, D ;
Lumer, ED ;
Friston, KJ .
NEURAL COMPUTATION, 2000, 12 (12) :2805-2821
[9]   Zero-lag synchronous dynamics in triplets of interconnected cortical areas [J].
Chawla, D ;
Friston, KJ ;
Lumer, ED .
NEURAL NETWORKS, 2001, 14 (6-7) :727-735
[10]  
Coles M. G. H., 1995, OX PSYCH S, P1