Solving optimal stopping problems of linear diffusions by applying convolution approximations

被引:9
作者
Alvarez, LHR [1 ]
机构
[1] Univ Turku, Inst Appl Math, FIN-20014 Turku, Finland
[2] Turku Sch Econ & Business Adm, Dept Econ Econ Math & Stat, FIN-20500 Turku, Finland
关键词
optimal stopping; linear diffusions; convolution approximation; exponential distribution;
D O I
10.1007/s001860000098
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study how the convolution approximation of continuous mappings can be applied in solving optimal stopping problems of linear diffusions whenever the underlying payoff is not differentiable and the smooth fit principle does not necessarily apply. We construct a sequence of smooth reward functions converging uniformly on compacts to the original reward and, consequently, we derive a sequence of continuously differentiable (i.e. satisfying the smooth fit principle) value functions converging to the value of the original stopping problem.
引用
收藏
页码:89 / 99
页数:11
相关论文
共 8 条
[1]  
Alvarez LHA., 1999, STOCH REP, V67, P83, DOI [10.1080/17442509908834204, DOI 10.1080/17442509908834204]
[2]   Demand uncertainty and the value of supply opportunities [J].
Alvarez, LHR .
JOURNAL OF ECONOMICS-ZEITSCHRIFT FUR NATIONALOKONOMIE, 1996, 64 (02) :163-175
[3]  
ALVAREZ LHR, 1998, A25 U TURK I APPL MA
[4]  
Borodin AN., 2012, Journal of the Royal Statistical Society-Series A Statistics in Society
[5]  
ksendal B., 1998, Stochastic Differential Equations: An Introduction with Applications, V6th, DOI [10.1007/978-3-662-03620-4, DOI 10.1007/978-3-662-03620-4]
[6]  
Oksendal B., 1998, Stoch. Stoch. Rep, V62, P285, DOI 10.1080/17442509808834137
[7]  
Protter Ph., 2004, Stochastic Integration and Differential Equations
[8]   OPTIMAL STOPPING OF ONE-DIMENSIONAL DIFFUSIONS [J].
SALMINEN, P .
MATHEMATISCHE NACHRICHTEN, 1985, 124 :85-101