Synthesis and characterization of single-crystalline α-MoO3 nanofibers for enhanced Li-ion intercalation applications

被引:96
作者
Dewangan, Khemchand [2 ]
Sinha, Nupur Nikkan [1 ]
Sharma, Prashant K. [3 ]
Pandey, Avinash C. [3 ]
Munichandraiah, N. [1 ]
Gajbhiye, N. S. [2 ]
机构
[1] Indian Inst Sci, Dept Inorgan & Phys Chem, Bangalore 560012, Karnataka, India
[2] Indian Inst Technol, Dept Chem, Kanpur 208016, Uttar Pradesh, India
[3] Univ Allahabad, Nanophosphor Applicat Ctr, Allahabad 211002, Uttar Pradesh, India
来源
CRYSTENGCOMM | 2011年 / 13卷 / 03期
关键词
MOLYBDENUM; MOO3; NANOSTRUCTURES; NANOPLATELETS; HYDROXYLAMINE; COMPLEXES; NANOBELTS; INSERTION; NANORODS; FIBERS;
D O I
10.1039/c0ce00271b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High quality, single-crystalline alpha-MoO3 nanofibers are synthesized by rapid hydrothermal method using a polymeric nitrosyl-complex of molybdenum(II) as molybdenum source without employing catalysts, surfactants, or templates. The possible reaction pathway is decomposition and oxidation of the complex to the polymolybdate and then surface condensation on the energetically favorable [001] direction in the initially formed nuclei of solid alpha-MoO3 under hydrothermal conditions. Highly crystalline alpha-MoO3 nanofibers have grown along [001] with lengths up to several micrometres and widths ranging between 280 and 320 nm. The alpha-MoO3 nanofibers exhibit desirable electrochemical properties such as high capacity reversibility as a cathode material of a Li-ion battery.
引用
收藏
页码:927 / 933
页数:7
相关论文
共 40 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]  
BARD AJ, 2006, ENCY ELECTROCHEMIS A, V7, P33
[3]   STRUCTURE OF MOO3-CENTER-DOT-1/2H(2)O BY CONVENTIONAL X-RAY-POWDER DIFFRACTION [J].
BENARD, P ;
SEGUIN, L ;
LOUER, D ;
FIGLARZ, M .
JOURNAL OF SOLID STATE CHEMISTRY, 1994, 108 (01) :170-176
[4]   Structural evolution of the MoO3(010) surface during lithium intercalation [J].
Bullard, JW ;
Smith, RL .
SOLID STATE IONICS, 2003, 160 (3-4) :335-349
[5]   Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons [J].
Chan, Candace K. ;
Peng, Hailin ;
Twesten, Ray D. ;
Jarausch, Konrad ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2007, 7 (02) :490-495
[6]   Fast Synthesis of α-MoO3 Nanorods with Controlled Aspect Ratios and Their Enhanced Lithium Storage Capabilities [J].
Chen, Jun Song ;
Cheah, Yan Ling ;
Madhavi, Srinivasan ;
Lou, Xiong Wen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (18) :8675-8678
[7]   Single-Crystalline Molybdenum Trioxide Nanoribbons: Photocatalytic, Photoconductive, and Electrochemical Properties [J].
Cheng, Liang ;
Shao, Mingwang ;
Wang, Xiuhua ;
Hu, Haibo .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (10) :2310-2316
[8]   MOLYBDENUM OXIDE CATHODES IN SECONDARY LITHIUM CELLS [J].
CHRISTIAN, PA ;
CARIDES, JN ;
DISALVO, FJ ;
WASZCZAK, JV .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1980, 127 (11) :2315-2319
[9]   Applications of Nanoparticles in Biology [J].
De, Mrinmoy ;
Ghosh, Partha S. ;
Rotello, Vincent M. .
ADVANCED MATERIALS, 2008, 20 (22) :4225-4241
[10]   PRINCIPLES OF STRUCTURE, BONDING, AND REACTIVITY FOR METAL NITROSYL COMPLEXES [J].
ENEMARK, JH ;
FELTHAM, RD .
COORDINATION CHEMISTRY REVIEWS, 1974, 13 (04) :339-406