Absolutely minimizing Lipschitz extension with discontinuous boundary data

被引:5
作者
Cao, F [1 ]
机构
[1] Ecole Normale Super Cachan, F-94235 Cachan, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 327卷 / 06期
关键词
D O I
10.1016/S0764-4442(98)89164-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Aronsson's notion of absolutely minimizing Lipschitz extension, solution of the nonlinear equation D(2)u(Du, Du) = 0 in the viscosity sense, well defined in a bounded domain with continuous boundary condition, is extended to the case of a boundary condition having a finite number of jumps. This extension with discontinuous boundary data is relevant in image interpolation theory. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 6 条
[1]   EXTENSION OF FUNCTIONS SATISFYING LIPSCHITZ CONDITIONS [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1967, 6 (06) :551-&
[2]  
CAO F, THESIS
[3]  
CASELLES V, 1996, AXIOMATIC APPROACH I
[4]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[5]   UNIQUENESS OF LIPSCHITZ EXTENSIONS - MINIMIZING THE SUP NORM OF THE GRADIENT [J].
JENSEN, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (01) :51-74
[6]  
JUUTINEN P, 1998, THESIS U JYVSKYL FIN