Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat

被引:234
作者
Hill, CE [1 ]
Beattie, MS [1 ]
Bresnahan, JC [1 ]
机构
[1] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
关键词
corticospinal; reticulospinal; regeneration; anterograde labeling; fluoro-ruby;
D O I
10.1006/exnr.2001.7734
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Contusive spinal cord injury (SCI) results in the formation of a chronic lesion cavity surrounded by a rim of spared fibers. Tissue bridges containing axons extend from the spared rim into the cavity dividing it into chambers. Whether descending axons can grow into these trabeculae or whether fibers within the trabeculae are spared fibers remains unclear. The purposes of the present study were (1) to describe the initial axonal response to contusion injury in an identified axonal population, (2) to determine whether and when sprouts grow in the face of the expanding contusion cavity, and (3) in the long term, to see whether any of these sprouts might contribute to the axonal bundles that have been seen within the chronic contusion lesion cavity. The design of the experiment also allowed us to further characterize the development of the lesion cavity after injury. The corticospinal tract (CST) underwent extensive dieback after contusive SCI, with retraction bulbs present from 1 day to 8 months postinjury. CST sprouting occurred between 3 weeks and 3 months, with penetration of CST axons into the lesion matrix occurring over an even longer time course. Collateralization and penetration of reticulospinal fibers were observed at 3 months and were more extensive at later time points. This suggests that these two descending systems show a delayed regenerative response and do extend axons into the lesion cavity and that the endogenous repair can continue for a very long time after SCI (C) 2001 Academic Press.
引用
收藏
页码:153 / 169
页数:17
相关论文
共 67 条
[1]  
BALENTINE JD, 1978, LAB INVEST, V39, P236
[2]  
BALENTINE JD, 1978, LAB INVEST, V39, P254
[3]  
Basso D. M., 1994, Society for Neuroscience Abstracts, V20, P147
[4]   Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection [J].
Basso, DM ;
Beattie, MS ;
Bresnahan, JC .
EXPERIMENTAL NEUROLOGY, 1996, 139 (02) :244-256
[5]  
Beattie MS, 2000, CONT NEUROS, P1
[6]   Endogenous repair after spinal cord contusion injuries in the rat [J].
Beattie, MS ;
Bresnahan, JC ;
Komon, J ;
Tovar, CA ;
Van Meter, M ;
Anderson, DK ;
Faden, AI ;
Hsu, CY ;
Noble, LJ ;
Salzman, S ;
Young, W .
EXPERIMENTAL NEUROLOGY, 1997, 148 (02) :453-463
[7]  
BLIGHT AR, 1992, J NEUROTRAUM, V9, pS83
[8]   RECOVERY FROM SPINAL-CORD INJURY MEDIATED BY ANTIBODIES TO NEURITE GROWTH-INHIBITORS [J].
BREGMAN, BS ;
KUNKELBAGDEN, E ;
SCHNELL, L ;
DAI, HN ;
GAO, D ;
SCHWAB, ME .
NATURE, 1995, 378 (6556) :498-501
[9]   Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat [J].
Bregman, BS ;
McAtee, M ;
Dal, HN ;
Kuhn, PL .
EXPERIMENTAL NEUROLOGY, 1997, 148 (02) :475-494
[10]   Three-Dimensional Computer-Assisted Analysis of Graded Contusion Lesions in the Spinal Cord of the Rat [J].
Bresnahan, Jacqueline C. ;
Beattie, Michael S. ;
Stokes, Bradford T. ;
Conway, Kevin M. .
JOURNAL OF NEUROTRAUMA, 1991, 8 (02) :91-101