Understanding anomalous transport in intermittent maps: From continuous-time random walks to fractals

被引:15
作者
Korabel, N
Chechkin, AV
Klages, R
Sokolov, IM
Gonchar, VY
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Inst Theoret Phys NSC KIPT, UA-61108 Kharkov, Ukraine
[3] Univ London, Queen Mary, Sch Math Sci, London E1 4NS, England
[4] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
来源
EUROPHYSICS LETTERS | 2005年 / 70卷 / 01期
关键词
D O I
10.1209/epl/i2004-10460-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the generalized diffusion coefficient of a subdiffusive intermittent map is a fractal function of control parameters. A modified continuous-time random-walk theory yields its coarse functional form and correctly describes a dynamical phase transition from normal to anomalous diffusion marked by strong suppression of diffusion. Similarly, the probability density of moving particles is governed by a time-fractional diffusion equation on coarse scales while exhibiting a specific. ne structure. Approximations beyond stochastic theory are derived from a generalized Taylor-Green-Kubo formula.
引用
收藏
页码:63 / 69
页数:7
相关论文
共 36 条
[1]  
AARONSON J, 2000, LMS LECT NOTES, V277, P1
[2]   Anomalous transport: A deterministic approach [J].
Artuso, R ;
Cristadoro, G .
PHYSICAL REVIEW LETTERS, 2003, 90 (24) :4
[3]   Aging in subdiffusion generated by a deterministic dynamical system [J].
Barkai, E .
PHYSICAL REVIEW LETTERS, 2003, 90 (10) :4
[4]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[5]   Cycle expansions for intermittent diffusion [J].
Dettmann, CP ;
Cvitanovic, P .
PHYSICAL REVIEW E, 1997, 56 (06) :6687-6692
[6]   SPORADICITY - BETWEEN PERIODIC AND CHAOTIC DYNAMICAL BEHAVIORS [J].
GASPARD, P ;
WANG, XJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (13) :4591-4595
[7]   ANOMALOUS DIFFUSION IN INTERMITTENT CHAOTIC SYSTEMS [J].
GEISEL, T ;
THOMAE, S .
PHYSICAL REVIEW LETTERS, 1984, 52 (22) :1936-1939
[8]  
GEISEL T, 1985, PHYS REV LETT, V54, P616, DOI 10.1103/PhysRevLett.54.616
[9]   Wright functions as scale-invariant solutions of the diffusion-wave equation [J].
Gorenflo, R ;
Luchko, Y ;
Mainardi, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :175-191
[10]   Diffusion of particles bouncing on a one-dimensional periodically corrugated floor [J].
Harayama, T. ;
Gaspard, P. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (3 II) :362151-362151