Histone acetylation and the cell-cycle in cancer

被引:99
作者
Wang, CG
Fu, MF
Mani, S
Wadler, S
Senderowicz, AM
Pestell, RG
机构
[1] Albert Einstein Coll Med, Dept Dev & Mol Biol, Albert Einstein Comprehens Canc Ctr, Bronx, NY 10461 USA
[2] Natl Inst Dent & Craniofacial Res, Mol Therapeut Unit, Oral & Pharyngeal Canc Branch, NIH, Bethesda, MD 20892 USA
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2001年 / 6卷
关键词
histone acetyltransferases; cyclin-pendent kinase (Cdk) inhibitors; flavopiridol; UCN-01; anticancer agents; review;
D O I
10.2741/1wang1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A number of distinct surveillance systems are found in mammalian cells that have the capacity to interrupt normal cell-cycle progression. These are referred to as cell cycle check points. Surveillance systems activated by DNA damage act at three stages, one at the G(1)/S phase boundary, one that monitors progression through S phase and one at the G(2)/M boundary. The initiation of DNA synthesis and irrevocable progression through G(1) phase represents an additional checkpoint when the cell commits to DNA synthesis. Transition through the cell cycle is regulated by a family of protein kinase holoenzymes, the cyclin-dependent kinases (Cdks), and their heterodimeric cyclin partner. Orderly progression through the cell-cycle checkpoints involves coordinated activation of the Cdks that, in the presence of an associated Cdk-activating kinase (CAK), phosphorylate target substrates including members of the "pocket protein" family. One of these, the product of the retinoblastoma susceptibility gene (the pRB protein), is phosphorylated sequentially by both cyclin D/Cdk4 complexes and cyclin E/Cdk2 kinases. Recent studies have identified important cross talk between the cell-cycle regulatory apparatus and proteins regulating histone acetylation. pRB binds both E2F proteins and histone deacetylase (HDAC) complexes. HDAC plays an important role in pRB tumor suppression function and transcriptional repression. Histones are required for accurate assembly of chromatin and the induction of histone gene expression is tightly coordinated. Recent studies have identified an important alternate substrate of cyclin E/Cdk2, NPAT (nuclear protein mapped to the ATM locus) which plays a critical role in promoting cell-cycle progression in the absence of pRB, and contributes to cell-cycle regulated histone gene expression. The acetylation of histones by a number of histone acetyl transferases (HATs) also plays an important role in coordinating gene expression and cell-cycle progression. Components of the cell-cycle regulatory apparatus are both regulated by HATs and bind directly to HATs. Finally transcription factors have been identified as substrate for HATs. Mutations of these transcription factors at their sites of acetylation has been associated with constitutive activity and enhanced cellular proliferation, suggesting an important role for acetylation in transcriptional repression as well as activation. Together these studies provide a working model in which the cell-cycle regulatory kinases phosphorylate and inactivate HDACs, coordinate histone gene expression and bind to histone acetylases themselves. The recent evidence for cross-talk between the cyclin-dependent kinases and histone gene expression on the one hand and cyclin-dependent regulation of histone acetylases on the other, suggests chemotherapeutics targeting histone acetylation may have complex and possibly complementary effects with agents targeting Cdks.
引用
收藏
页码:D610 / D629
页数:20
相关论文
共 216 条
[1]   Cyclin D1 associates with the TBP-associated factor TAFII250 to regulate Sp1-mediated transcription [J].
Adnane, J ;
Shao, ZH ;
Robbins, PD .
ONCOGENE, 1999, 18 (01) :239-247
[2]  
AGRAWAL D, 1995, CELL GROWTH DIFFER, V6, P1199
[3]   Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A [J].
Ait-Si-Ali, S ;
Ramirez, S ;
Barre, FX ;
Dkhissi, F ;
Magnaghi-Jaulin, L ;
Girault, JA ;
Robin, P ;
Knibiehler, M ;
Pritchard, LL ;
Ducommun, B ;
Trouche, D ;
Harel-Bellan, A .
NATURE, 1998, 396 (6707) :184-186
[4]   Histone H2B phosphorylation in mammalian apoptotic cells - An association with DNA fragmentation [J].
Ajiro, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :439-443
[5]  
AKINAGA S, 1994, CANCER CHEMOTH PHARM, V33, P273
[6]   Differential effects of UCN-01, staurosporine and CGP 41 251 on cell cycle progression and CDC2 cyclin B1 regulation in A431 cells synchronized at M phase by nocodazole [J].
Akiyama, T ;
Shimizu, M ;
Okabe, W ;
Tamaoki, T ;
Akinaga, S .
ANTI-CANCER DRUGS, 1999, 10 (01) :67-78
[7]  
Akiyama T, 1997, CANCER RES, V57, P1495
[8]   Activation of the cyclin D1 gene by the EPA-associated protein p300 through AP-1 inhibits cellular apoptosis [J].
Albanese, C ;
D'Amico, M ;
Reutens, AT ;
Fu, MF ;
Watanabe, G ;
Lee, RJ ;
Kitsis, RN ;
Henglein, B ;
Avantaggiati, M ;
Somasundaram, K ;
Thimmapaya, B ;
Pestell, RG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (48) :34186-34195
[9]   TRANSFORMING P21(RAS) MUTANTS AND C-ETS-2 ACTIVATE THE CYCLIN D1 PROMOTER THROUGH DISTINGUISHABLE REGIONS [J].
ALBANESE, C ;
JOHNSON, J ;
WATANABE, G ;
EKLUND, N ;
VU, D ;
ARNOLD, A ;
PESTELL, RG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23589-23597
[10]   Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [J].
Alland, L ;
Muhle, R ;
Hou, H ;
Potes, J ;
Chin, L ;
SchreiberAgus, N ;
DePinho, RA .
NATURE, 1997, 387 (6628) :49-55