Minimising Immunohistochemical False Negative ER Classification Using a Complementary 23 Gene Expression Signature of ER Status

被引:26
作者
Li, Qiyuan [1 ]
Eklund, Aron C. [1 ]
Juul, Nicolai [1 ]
Haibe-Kains, Benjamin [2 ]
Workman, Christopher T. [1 ]
Richardson, Andrea L. [3 ]
Szallasi, Zoltan [1 ,4 ]
Swanton, Charles [5 ,6 ,7 ]
机构
[1] Tech Univ Denmark, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark
[2] Harvard Univ, Ctr Canc Computat Biol, Dana Farber Canc Inst, Computat Biol & Funct Genom Lab,Sch Publ Hlth, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[4] Harvard Univ, Childrens Hosp, Harvard MIT Div Hlth Sci & Technol CHIP HST, Informat Program,Sch Med, Boston, MA 02115 USA
[5] Canc Res UK London Res Inst, Translat Canc Therapeut Lab, London, England
[6] Royal Marsden Hosp, Breast Unit, Sutton, Surrey, England
[7] Royal Marsden Hosp, Drug Dev Unit, Sutton, Surrey, England
来源
PLOS ONE | 2010年 / 5卷 / 12期
基金
英国医学研究理事会;
关键词
PRIMARY BREAST-CANCER; ESTROGEN-RECEPTOR STATUS; HISTOLOGIC GRADE; RECURRENCE; PREDICT; CHEMOTHERAPY; RESISTANCE; PATTERNS; SUBTYPES; THERAPY;
D O I
10.1371/journal.pone.0015031
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Expression of the oestrogen receptor (ER) in breast cancer predicts benefit from endocrine therapy. Minimising the frequency of false negative ER status classification is essential to identify all patients with ER positive breast cancers who should be offered endocrine therapies in order to improve clinical outcome. In routine oncological practice ER status is determined by semi-quantitative methods such as immunohistochemistry (IHC) or other immunoassays in which the ER expression level is compared to an empirical threshold[1,2]. The clinical relevance of gene expression-based ER subtypes as compared to IHC-based determination has not been systematically evaluated. Here we attempt to reduce the frequency of false negative ER status classification using two gene expression approaches and compare these methods to IHC based ER status in terms of predictive and prognostic concordance with clinical outcome. Methodology/Principal Findings: Firstly, ER status was discriminated by fitting the bimodal expression of ESR1 to a mixed Gaussian model. The discriminative power of ESR1 suggested bimodal expression as an efficient way to stratify breast cancer; therefore we identified a set of genes whose expression was both strongly bimodal, mimicking ESR expression status, and highly expressed in breast epithelial cell lines, to derive a 23-gene ER expression signature-based classifier. We assessed our classifiers in seven published breast cancer cohorts by comparing the gene expression-based ER status to IHC-based ER status as a predictor of clinical outcome in both untreated and tamoxifen treated cohorts. In untreated breast cancer cohorts, the 23 gene signature-based ER status provided significantly improved prognostic power compared to IHCbased ER status (P = 0.006). In tamoxifen-treated cohorts, the 23 gene ER expression signature predicted clinical outcome (HR = 2.20, P = 0.00035). These complementary ER signature-based strategies estimated that between 15.1% and 21.8% patients of IHC-based negative ER status would be classified with ER positive breast cancer. Conclusion/Significance: Expression-based ER status classification may complement IHC to minimise false negative ER status classification and optimise patient stratification for endocrine therapies.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Molecular characterization of the tumor microenvironment in breast cancer [J].
Allinen, M ;
Beroukhim, R ;
Cai, L ;
Brennan, C ;
Lahti-Domenici, J ;
Huang, HY ;
Porter, D ;
Hu, M ;
Chin, L ;
Richardson, A ;
Schnitt, S ;
Sellers, WR ;
Polyak, K .
CANCER CELL, 2004, 6 (01) :17-32
[2]   Commentary: Hormone Receptor Testing in Breast Cancer: A Distress Signal from Canada [J].
Allred, D. Craig .
ONCOLOGIST, 2008, 13 (11) :1134-1136
[3]   Estrogen receptor-positive, progesterone receptor-negative breast cancer: Association with growth factor receptor expression and tamoxifen resistance [J].
Arpino, G ;
Weiss, H ;
Lee, AV ;
Schiff, R ;
De Placido, S ;
Osborne, CK ;
Elledge, RM .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2005, 97 (17) :1254-1261
[4]   Oestrogen-receptor-positive breast cancer: towards bridging histopathological and molecular classifications [J].
Badve, S. ;
Nakshatri, H. .
JOURNAL OF CLINICAL PATHOLOGY, 2009, 62 (01) :6-12
[5]  
BARNES DMM, 1998, EUROPEAN J CANC, V34
[6]   Bimodal gene expression patterns in breast cancer [J].
Bessarabova, Marina ;
Kirillov, Eugene ;
Shi, Weiwei ;
Bugrim, Andrej ;
Nikolsky, Yuri ;
Nikolskaya, Tatiana .
BMC GENOMICS, 2010, 11
[7]   A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer [J].
Chanrion, Maiea ;
Negre, Vincent ;
Fontaine, Helene ;
Salvetat, Nicolas ;
Bibeau, Frederic ;
Mac Grogan, Gaetan ;
Mauriac, Louis ;
Katsaros, Dionyssios ;
Molina, Franck ;
Theillet, Charles ;
Darbon, Jean-Marie .
CLINICAL CANCER RESEARCH, 2008, 14 (06) :1744-1752
[8]   On the meaning and use of kurtosis [J].
DeCarlo, LT .
PSYCHOLOGICAL METHODS, 1997, 2 (03) :292-307
[9]   Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes [J].
Desmedt, Christine ;
Haibe-Kains, Benjamin ;
Wirapati, Pratyaksha ;
Buyse, Marc ;
Larsimont, Denis ;
Bontempi, Gianluca ;
Delorenzi, Mauro ;
Piccart, Martine ;
Sotiriou, Christos .
CLINICAL CANCER RESEARCH, 2008, 14 (16) :5158-5165
[10]   An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen [J].
Doane, A. S. ;
Danso, M. ;
Lal, P. ;
Donaton, M. ;
Zhang, L. ;
Hudis, C. ;
Gerald, W. L. .
ONCOGENE, 2006, 25 (28) :3994-4008