CBP is required for sterol-regulated and sterol regulatory element-binding protein regulated transcription

被引:50
作者
Ericsson, J
Edwards, PA
机构
[1] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Med, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA
关键词
D O I
10.1074/jbc.273.28.17865
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cells were transfected with luciferase reporter genes, under the control of promoters derived from either the farnesyl diphosphate (FPP) synthase, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, HMG-CoA reductase, or low density lipoprotein receptor genes. The increase in luciferase activity that occurred when cells were either incubated in sterol-depleted medium or cotransfected with a cDNA encoding sterol regulatory element-binding protein (SREBP)-1a was prevented by coexpression of wild type E1A or a Gal4-CBP (1-451) fusion protein. The inhibitory effect of E1A was overcome by coexpression of CBP. The increase in reporter gene activity noted above was not affected when the cells were cotransfected with cDNAs that encoded either a mutant E1A that is unable to interact with the transcriptional activator CBP or Gal4-CBP fusion proteins encoding separate fragments of CBP, which span the remainder of the CBP molecule, A preformed SREBP-1a:[P-32]DNA complex bound specifically to membrane-immobilized GST-CBP fusion proteins that contained amino terminal portions of CBP, In order to investigate the role of CBP in the regulation of endogenous genes, we isolated stable transformants that express Ga14-CBP(1-451) in response to added doxycycline. Induction of endogenous FPP synthase and HMG-CoA synthase mRNAs, in response to cellular cholesterol depletion, was prevented when cells expressed Ga14-CBP(1-451), We conclude that when cells are incubated in the absence of sterols, the transcriptional activation of the HMG-CoA synthase, HMG-CoA reductase, FPP synthase, and low density lipoprotein receptor genes is dependent on a specific interaction between SREBP, which is bound to the promoter DNA, and the amino terminal domain (amino acids 1-451) of CBP.
引用
收藏
页码:17865 / 17870
页数:6
相关论文
共 34 条
[1]   Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1: A critical role for the btd domain of Sp1 [J].
Athanikar, JN ;
Sanchez, HB ;
Osborne, TF .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (09) :5193-5200
[2]   The CBP co-activator is a histone acetyltransferase [J].
Bannister, AJ ;
Kouzarides, T .
NATURE, 1996, 384 (6610) :641-643
[3]   STEROL REGULATION OF FATTY-ACID SYNTHASE PROMOTER - COORDINATE FEEDBACK-REGULATION OF 2 MAJOR LIPID PATHWAYS [J].
BENNETT, MK ;
LOPEZ, JM ;
SANCHEZ, HB ;
OSBORNE, TF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (43) :25578-25583
[4]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[5]   PHOSPHORYLATED CREB BINDS SPECIFICALLY TO THE NUCLEAR-PROTEIN CBP [J].
CHRIVIA, JC ;
KWOK, RPS ;
LAMB, N ;
HAGIWARA, M ;
MONTMINY, MR ;
GOODMAN, RH .
NATURE, 1993, 365 (6449) :855-859
[6]  
Eckner R, 1996, BIOL CHEM, V377, P685
[7]   Sterol regulatory element binding protein binds to a cis element in the promoter of the farnesyl diphosphate synthase gene [J].
Ericsson, J ;
Jackson, SM ;
Lee, BC ;
Edwards, PA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (02) :945-950
[8]   Identification of glycerol-3-phosphate acyltransferase as an adipocyte determination and differentiation factor 1- and sterol regulatory element-binding protein-responsive gene [J].
Ericsson, J ;
Jackson, SM ;
Kim, JB ;
Spiegelman, BM ;
Edwards, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (11) :7298-7305
[9]   Synergistic binding of sterol regulatory element-binding protein and NF-Y to the farnesyl diphosphate synthase promoter is critical for sterol-regulated expression of the gene [J].
Ericsson, J ;
Jackson, SM ;
Edwards, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (40) :24359-24364
[10]   LOSS OF TRANSCRIPTIONAL ACTIVATION OF 3 STEROL-REGULATED GENES IN MUTANT HAMSTER-CELLS [J].
EVANS, MJ ;
METHERALL, JE .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (09) :5175-5185