Asymmetric coupling effects in the synchronization of spatially extended chaotic systems

被引:38
作者
Bragard, J [1 ]
Boccaletti, S
Mancini, H
机构
[1] Univ Navarra, Dept Appl Math & Phys, E-31080 Pamplona, Spain
[2] Ist Nazl Ott Applicata, I-50125 Florence, Italy
关键词
D O I
10.1103/PhysRevLett.91.064103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the effects of asymmetric couplings in setting different synchronization states for a pair of unidimensional fields obeying complex Ginzburg-Landau equations. Novel features such as asymmetry enhanced complete synchronization, limits for the appearance of phase synchronized states, and selection of the final synchronized dynamics are reported and characterized.
引用
收藏
页数:4
相关论文
共 35 条
[1]   Synchronization of homoclinic chaos [J].
Allaria, E ;
Arecchi, FT ;
Di Garbo, A ;
Meucci, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :791-794
[2]   One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures [J].
Belykh, VN ;
Mosekilde, E .
PHYSICAL REVIEW E, 1996, 54 (04) :3196-3203
[3]   Cluster synchronization modes in an ensemble of coupled chaotic oscillators [J].
Belykh, VN ;
Belykh, IV ;
Mosekilde, E .
PHYSICAL REVIEW E, 2001, 63 (03) :362161-362164
[4]   Anomalous phase synchronization in populations of nonidentical oscillators -: art. no. 035204 [J].
Blasius, B ;
Montbrió, E ;
Kurths, J .
PHYSICAL REVIEW E, 2003, 67 (03) :4
[5]   Synchronization in nonidentical extended systems [J].
Boccaletti, S ;
Bragard, J ;
Arecchi, FT ;
Mancini, H .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :536-539
[6]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[7]   Control and synchronization of space extended dynamical systems [J].
Bragard, J ;
Boccaletti, S ;
Arecchi, FT .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (11) :2715-2729
[8]   Forcing oscillatory media:: phase kinks vs. synchronization [J].
Chaté, H ;
Pikovsky, A ;
Rudzick, O .
PHYSICA D, 1999, 131 (1-4) :17-30
[9]   SPATIOTEMPORAL INTERMITTENCY REGIMES OF THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION [J].
CHATE, H .
NONLINEARITY, 1994, 7 (01) :185-204
[10]  
Cladis P.E., 1995, SPATIOTEMPORAL PATTE