A multistep surface mechanism for ethane oxidative dehydrogenation on Pt- and Pt/Sn-coated monoliths

被引:39
作者
Donsì, F [1 ]
Williams, KA [1 ]
Schmidt, LD [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
关键词
D O I
10.1021/ie0493356
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A computational study of ethane oxidative dehydrogenation to ethylene on Pt- and Pt/Sn-coated monoliths is presented as an improvement to previous kinetic models in reproducing experimental findings over a wide range of feed conditions. The multistep surface mechanism containing 20 reversible reactions among 11 surface species is based on published reaction steps for hydrogen and methane oxidation combined with lumped steps for ethane surface chemistry and coupled with an established homogeneous mechanism to form the detailed chemistry model. Simulation results at 1 atm are in good agreement with experimental data obtained on Pt at variable C2H6/O-2 and C2H6/O-2/H-2 ratios and predict experimentally observed phenomena such as ignition temperatures and homogeneous ethylene formation. The model is also used to predict Pt monolith performance over an industrially relevant range of space velocities (0.7-3.4 x 10(5) h(-1)) and pressures (1-10 atm). Furthermore, the Pt mechanism is extended to a Pt/Sn catalyst by changing two parameters in the H and CO oxidation steps, and agreement with experiments is obtained with and without H-2 addition.
引用
收藏
页码:3453 / 3470
页数:18
相关论文
共 56 条
[1]   A C1 mechanism for methane oxidation on platinum [J].
Aghalayam, P ;
Park, YK ;
Fernandes, N ;
Papavassiliou, V ;
Mhadeshwar, AB ;
Vlachos, DG .
JOURNAL OF CATALYSIS, 2003, 213 (01) :23-38
[2]  
ALCALA R, 2005, J PHYS CHEM B
[3]   Production of olefins via oxidative dehydrogenation of light paraffins at short contact times [J].
Beretta, A ;
Ranzi, E ;
Forzatti, P .
CATALYSIS TODAY, 2001, 64 (1-2) :103-111
[4]   Oxidative dehydrogenation of light paraffins in novel short contact time reactors. Experimental and theoretical investigation [J].
Beretta, A ;
Ranzi, E ;
Forzatti, P .
CHEMICAL ENGINEERING SCIENCE, 2001, 56 (03) :779-787
[5]  
BERETTA A, 2000, STUD SURF SCI CATA B, V130
[6]   Oxidative dehydrogenation of ethane at millisecond contact times:: Effect of H2 addition [J].
Bodke, AS ;
Henning, D ;
Schmidt, LD ;
Bharadwaj, SS ;
Maj, JJ ;
Siddall, J .
JOURNAL OF CATALYSIS, 2000, 191 (01) :62-74
[7]  
BOND TC, 1996, P 26 INT S COMB, V1, P1771
[8]   Oxidation of CO on a Pt/Al2O3 catalyst:: From the surface elementary steps to light-off tests I.: Kinetic study of the oxidation of the linear CO species [J].
Bourane, A ;
Bianchi, D .
JOURNAL OF CATALYSIS, 2001, 202 (01) :34-44
[9]   THE OXIDATIVE DEHYDROGENATION OF ETHANE AND PROPANE AS AN ALTERNATIVE WAY FOR THE PRODUCTION OF LIGHT OLEFINS [J].
CAVANI, F ;
TRIFIRO, F .
CATALYSIS TODAY, 1995, 24 (03) :307-313
[10]  
Cavani F, 1998, STUD SURF SCI CATAL, V119, P561