Detection of a dynamic topography signal in last interglacial sea-level records

被引:81
作者
Austermann, Jacqueline [1 ,2 ]
Mitrovica, Jerry X. [2 ]
Huybers, Peter [2 ]
RovereA, Alessio [3 ,4 ]
机构
[1] Univ Cambridge, Dept Earth Sci, Cambridge, England
[2] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA
[3] Univ Bremen, MARUM Ctr Marine Environm Sci, Leobener Str, D-28359 Bremen, Germany
[4] Leibniz Ctr Trop Marine Res, ZMT, Fahrenheitstr 6, D-28359 Bremen, Germany
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 07期
基金
美国国家科学基金会;
关键词
MANTLE HETEROGENEITY; CONTINENTAL-MARGIN; MARINE TERRACES; HEAT-FLOW; SUBSIDENCE; MODELS; STRATIGRAPHY; CONSTRAINTS; QUATERNARY; AGE;
D O I
10.1126/sciadv.1700457
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (> 95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters.
引用
收藏
页数:8
相关论文
共 72 条
[1]   Savani: A variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets [J].
Auer, L. ;
Boschi, L. ;
Becker, T. W. ;
Nissen-Meyer, T. ;
Giardini, D. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2014, 119 (04) :3006-3034
[2]   Calculating gravitationally self-consistent sea level changes driven by dynamic topography [J].
Austermann, J. ;
Mitrovica, J. X. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 203 (03) :1909-1922
[3]   A review of the MIS 5e highstand deposits from Santa Maria Island (Azores, NE Atlantic): palaeobiodiversity, palaeoecology and palaeobiogeography [J].
Avila, Sergio P. ;
Melo, Carlos ;
Silva, Luis ;
Ramalho, Ricardo S. ;
Quartau, Rui ;
Hipolito, Ana ;
Cordeiro, Ricardo ;
Rebelo, Ana Cristina ;
Madeira, Patricia ;
Rovere, Alessio ;
Hearty, Paul J. ;
Henriques, Diamantino ;
da Silva, Carlos Marques ;
de Frias Martins, Antonio M. ;
Zazo, Caridad .
QUATERNARY SCIENCE REVIEWS, 2015, 114 :126-148
[4]  
Bangerth W., 2014, ASPECT: Advanced Solver for Problems in Earth's ConvecTion
[5]  
BOND GC, 1984, GEOL SOC AM BULL, V95, P155, DOI 10.1130/0016-7606(1984)95<155:COTSCF>2.0.CO
[6]  
2
[7]   Sea level ∼400 000 years ago (MIS 11): analogue for present and future sea-level? [J].
Bowen, D. Q. .
CLIMATE OF THE PAST, 2010, 6 (01) :19-29
[8]   A 300,000-yr coral reef record of sea level changes, Mururoa atoll (Tuamotu archipelago, French Polynesia) [J].
Camoin, GF ;
Ebren, P ;
Eisenhauer, A ;
Bard, E ;
Faure, G .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2001, 175 (1-4) :325-341
[9]   GLOBAL CHANGE Interglacial and future sea level [J].
Clark, Peter U. ;
Huybers, Peter .
NATURE, 2009, 462 (7275) :856-857
[10]   The solid Earth's influence on sea level [J].
Conrad, Clinton P. .
GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2013, 125 (7-8) :1027-1052