Photosynthetic algorithm approaches for bioinformatics

被引:3
作者
Alatas, Bilal [1 ]
机构
[1] Tunceli Univ, Dept Comp Engn, TR-62000 Tunceli, Turkey
基金
巴西圣保罗研究基金会;
关键词
Heuristics; Photosynthetic algorithm; Bioinformatics; Multiple sequence alignment; Association rules mining; FEATURE-SELECTION; NEURAL-NETWORK; CLASSIFICATION; SIGNALS;
D O I
10.1016/j.eswa.2011.02.102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Photosynthetic algorithm (PA) is the newly biosystem-derived heuristic search algorithm that utilizes the dark reaction rules governing the transfer of carbon molecules from one substance into another in the Calvin-Benson cycle and photorespiration. There are only two works using this new algorithm in the literature, one for finite element analysis and one for N-queen problem. This paper presents PA based novel solution techniques in bioinformatics problems such as aligning multiple sequences and discovering association rules within bio-medical data. The simulation results demonstrate the applicability and potential of this algorithm. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10541 / 10553
页数:13
相关论文
共 25 条
[1]   Constructive training of probabilistic neural networks [J].
Berthold, MR ;
Diamond, J .
NEUROCOMPUTING, 1998, 19 (1-3) :167-183
[2]  
CAMPOS MA, 2008, NDT E INT
[3]   Analysis of the stress dependent magnetic easy axis in ASTM 36 steel by the magnetic Barkhausen noise [J].
Capo-Sanchez, J. ;
Perez-Benitez, J. ;
Padovese, L. R. .
NDT & E INTERNATIONAL, 2007, 40 (02) :168-172
[4]   Dependence of the magnetic Barkhausen emission with carbon content in commercial steels [J].
Capó-Sánchez, J ;
Pérez-Benitez, JA ;
Padovese, LR ;
Serna-Giraldo, C .
JOURNAL OF MATERIALS SCIENCE, 2004, 39 (04) :1367-1370
[5]   MFL signals and artificial neural networks applied to detection and classification of pipe weld defects [J].
Carvalho, A. A. ;
Rebello, J. M. A. ;
Sagrilo, L. V. S. ;
Camerini, C. S. ;
Miranda, I. V. J. .
NDT & E INTERNATIONAL, 2006, 39 (08) :661-667
[6]   An iterative pruning algorithm for feedforward neural networks [J].
Castellano, G ;
Fanelli, AM ;
Pelillo, M .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (03) :519-531
[7]  
Cullity B.D., 1972, Introduction to Magnetic Materials
[8]   Feature selection in the independent component subspace for face recognition [J].
Ekenel, HK ;
Sankur, B .
PATTERN RECOGNITION LETTERS, 2004, 25 (12) :1377-1388
[9]   Nondestructive evaluation of material parameters using neural networks [J].
Fiedler, U ;
Kroning, M ;
Theiner, WA .
NONDESTRUCTIVE CHARACTERIZATION OF MATERIALS VII, PTS 1 AND 2, 1996, 210-2 :343-348
[10]  
Frean M, 1990, NEURAL COMPUT, V2, P198