Surface phonons of lithium ion battery active materials

被引:22
作者
Benedek, Peter [1 ]
Yazdani, Nuri [1 ]
Chen, Hungru [2 ]
Wenzler, Nils [1 ]
Juranyi, Fanni [3 ]
Mansson, Martin [4 ]
Islam, M. Saiful [2 ]
Wood, Vanessa C. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Informat Technol & Elect Engn, CH-8092 Zurich, Switzerland
[2] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[3] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland
[4] KTH Royal Inst Technol, Dept Appl Phys, SE-16440 Stockholm, Kista, Sweden
来源
SUSTAINABLE ENERGY & FUELS | 2019年 / 3卷 / 02期
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 瑞典研究理事会;
关键词
CATHODE MATERIALS; LIFEPO4; DIFFUSION; ELECTROCHEMISTRY; VISUALIZATION; CONDUCTIVITY; MORPHOLOGY; DEFECTS; GROWTH;
D O I
10.1039/c8se00389k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surfaces of active materials are understood to play an important role in the performance and lifetime of lithium-ion batteries, but they remain poorly characterized and therefore cannot yet be systematically designed. Here, we combine inelastic neutron scattering and ab initio simulations to demonstrate that the structure of the surface of active materials differs from the interior of the particle. We use LiFePO4 (LFP) as a model system, and we find that carbon coating influences the Li-O bonding on the (010) LFP surface relative to the bulk. Our results highlight how coatings can be used to systematically engineer the vibrations of atoms at the surface of battery active materials, and thereby impact lithium ion transport, charge transfer, and surface reactivity.
引用
收藏
页码:508 / 513
页数:6
相关论文
共 48 条
[1]   Muon studies of Li+ diffusion in LiFePO4 nanoparticles of different polymorphs [J].
Ashton, Thomas E. ;
Laveda, Josefa Vidal ;
MacLaren, Donald A. ;
Baker, Peter J. ;
Porch, Adrian ;
Jones, Martin O. ;
Corr, Serena A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (17) :6238-6245
[2]   Nonstoichiometric LiFePO4: Defects and Related Properties [J].
Axmann, P. ;
Stinner, C. ;
Wohlfahrt-Mehrens, M. ;
Mauger, A. ;
Gendron, F. ;
Julien, C. M. .
CHEMISTRY OF MATERIALS, 2009, 21 (08) :1636-1644
[3]   DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data [J].
Azuah, Richard Tumanjong ;
Kneller, Larry R. ;
Qiu, Yiming ;
Tregenna-Piggott, Philip L. W. ;
Brown, Craig M. ;
Copley, John R. D. ;
Dimeo, Robert M. .
JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2009, 114 (06) :341-358
[4]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[5]   Low temperature hydrothermal synthesis of battery grade lithium iron phosphate [J].
Benedek, Peter ;
Wenzler, Nils ;
Yarema, Maksym ;
Wood, Vanessa C. .
RSC ADVANCES, 2017, 7 (29) :17763-17767
[6]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[7]   Direct Physical Imaging and Chemical Probing of LiFePO4 for Lithium-Ion Batteries [J].
Chung, Sung-Yoon ;
Kim, Young-Min ;
Choi, Si-Young .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (24) :4219-4232
[8]   Calculations of Li-Ion Diffusion in Olivine Phosphates [J].
Dathar, Gopi Krishna Phani ;
Sheppard, Daniel ;
Stevenson, Keith J. ;
Henkelman, Graeme .
CHEMISTRY OF MATERIALS, 2011, 23 (17) :4032-4037
[9]   Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K [J].
Dokko, Kaoru ;
Koizumi, Shohei ;
Nakano, Hiroyuki ;
Kanamura, Kiyoshi .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (45) :4803-4810
[10]   Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4 [J].
Ellis, B. ;
Kan, Wang Hay ;
Makahnouk, W. R. M. ;
Nazar, L. F. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) :3248-3254