Future changes in vegetation and ecosystem function of the Barents Region

被引:97
作者
Wolf, Annett [1 ,2 ,3 ]
Callaghan, Terry V. [3 ,4 ]
Larson, Karin [2 ]
机构
[1] Inst Terr Ecosyst, Dept Environm Sci, Universitatsstr 16, CH-8092 Zurich, Switzerland
[2] Lund Univ, Dept Phys Geog & Ecosyst Anal, Lund, Sweden
[3] Abisko Sci Res Stn, Abisko, Sweden
[4] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England
关键词
D O I
10.1007/s10584-007-9342-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The dynamic vegetation model (LPJ-GUESS) is used to project transient impacts of changes in climate on vegetation of the Barents Region. We incorporate additional plant functional types, i.e. shrubs and defined different types of open ground vegetation, to improve the representation of arctic vegetation in the global model. We use future climate projections as well as control climate data for 1981-2000 from a regional climate model (REMO) that assumes a development of atmospheric CO2-concentration according to the B2-SRES scenario [IPCC, Climate Change 2001: The scientific basis. Contribution working group I to the Third assessment report of the IPCC. Cambridge University Press, Cambridge (2001)]. The model showed a generally good fit with observed data, both qualitatively when model outputs were compared to vegetation maps and quantitatively when compared with observations of biomass, NPP and LAI. The main discrepancy between the model output and observed vegetation is the overestimation of forest abundance for the northern parts of the Kola Peninsula that cannot be explained by climatic factors alone. Over the next hundred years, the model predicted an increase in boreal needle leaved evergreen forest, as extensions northwards and upwards in mountain areas, and as an increase in biomass, NPP and LAI. The model also projected that shade-intolerant broadleaved summergreen trees will be found further north and higher up in the mountain areas. Surprisingly, shrublands will decrease in extent as they are replaced by forest at their southern margins and restricted to areas high up in the mountains and to areas in northern Russia. Open ground vegetation will largely disappear in the Scandinavian mountains. Also counter-intuitively, tundra will increase in abundance due to the occupation of previously unvegetated areas in the northern part of the Barents Region. Spring greening will occur earlier and LAI will increase. Consequently, albedo will decrease both in summer and winter time, particularly in the Scandinavian mountains (by up to 18%). Although this positive feedback to climate could be offset to some extent by increased CO2 drawdown from vegetation, increasing soil respiration results in NEE close to zero, so we cannot conclude to what extent or whether the Barents Region will become a source or a sink of CO2.
引用
收藏
页码:51 / 73
页数:23
相关论文
共 112 条
[1]  
ACIA (Arctic Climate Impact Assessment), 2005, ARCTIC CLIMATE IMPAC, P1042
[2]  
[Anonymous], 2001, THESIS LUND U LUND
[3]  
[Anonymous], 1991, DIG SOIL MAP WORLD R
[4]  
*ARCT COUNC, 2004, 4 ARCT COUNC MIN M R
[5]   Global synthesis of leaf area index observations: implications for ecological and remote sensing studies [J].
Asner, GP ;
Scurlock, JMO ;
Hicke, JA .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2003, 12 (03) :191-205
[7]   Tree species composition in European pristine forests:: Comparison of stand data to model predictions [J].
Badeck, FW ;
Lischke, H ;
Bugmann, H ;
Hickler, T ;
Hönninger, K ;
Lasch, P ;
Lexer, MJ ;
Mouillot, F ;
Schaber, J ;
Smith, B .
CLIMATIC CHANGE, 2001, 51 (3-4) :307-347
[8]  
Begon M., 1996, ECOLOGY
[9]   Surface energy exchanges along a tundra-forest transition and feedbacks to climate [J].
Beringer, J ;
Chapin, FS ;
Thompson, CC ;
McGuire, AD .
AGRICULTURAL AND FOREST METEOROLOGY, 2005, 131 (3-4) :143-161
[10]   Albedo over the boreal forest [J].
Betts, AK ;
Ball, JH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D24) :28901-28909