POLDER observations of cloud bidirectional reflectances compared to a plane-parallel model using the International Satellite Cloud Climatology Project cloud phase functions

被引:22
作者
Descloitres, J
Buriez, JC
Parol, F
Fouquart, Y
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Univ Sci & Technol Lille, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France
关键词
D O I
10.1029/98JD00592
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study investigates the validity of the plane-parallel cloud model and in addition the suitability of water droplet and ice polycrystal phase functions for stratocumulus and cirrus clouds, respectively. To do that, we take advantage of the multidirectional viewing capability of the Polarization and Directionality of the Earth's Reflectances (POLDER) instrument which allows us to characterize the anisotropy of the reflected radiation field. We focus on the analysis of airborne-POLDER data acquired over stratocumulus and cirrus clouds during two selected flights ton April 17 and April 18, 1994) of the European Cloud and Radiation Experiment (EUCREX'94) campaign. The bidirectional reflectances measured in the 0.86 mu m channel are compared to plane-parallel cloud simulations computed with the microphysical models used by the International Satellite Cloud Climatology Project (ISCCP). Although clouds are not homogeneous plane-parallel layers, the extended cloud layers under study appear to act, on average, as a homogeneous plane-parallel layer. The standard water droplet model (with an effective radius of 10 mu m) used in the ISCCP analysis seems to be suitable for stratocumulus clouds. The relative: root-mean-square difference between the observed bidirectional reflectances and the model is only 2%. For cirrus clouds, the water droplet cloud model is definitely inadequate since the rms difference rises to 9%; when the ice polycrystal model chosen for the reanalysis of ISCCP data is used instead, the rms difference is reduced to 3%.
引用
收藏
页码:11411 / 11418
页数:8
相关论文
共 30 条
[1]   Cloud detection and derivation of cloud properties from POLDER [J].
Buriez, JC ;
Vanbauce, C ;
Parol, F ;
Goloub, P ;
Herman, M ;
Bonnel, B ;
Fouquart, Y ;
Couvert, P ;
Seze, G .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (13) :2785-2813
[2]  
CAHALAN RF, 1994, J ATMOS SCI, V51, P3776, DOI 10.1175/1520-0469(1994)051<3776:IPAMCE>2.0.CO
[3]  
2
[4]   Cloud feedback in atmospheric general circulation models: An update [J].
Cess, RD ;
Zhang, MH ;
Ingram, WJ ;
Potter, GL ;
Alskseev, V ;
Barker, HW ;
Cohen-Solal, E ;
Colman, RA ;
Dazlich, DA ;
Del Genio, AD ;
Dix, MR ;
Dymnikov, V ;
Esch, M ;
Fowler, LD ;
Fraser, JR ;
Galin, V ;
Gates, WL ;
Hack, JJ ;
Kiehl, JT ;
Le Treut, H ;
Lo, KKW ;
McAvaney, BJ ;
Meleshko, VP ;
Morcrette, JJ ;
Randall, DA ;
Roeckner, E ;
Royer, JF ;
Schlesinger, ME ;
Sporyshev, PV ;
Timbal, B ;
Volodin, EM ;
Taylor, KE ;
Wang, W ;
Wetherald, RT .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D8) :12791-12794
[5]  
Cox C., 1956, Bull. Scripps Inst. Oceanogr., V6, P401
[6]  
Davis A, 1997, J ATMOS SCI, V54, P241, DOI 10.1175/1520-0469(1997)054<0241:TLSBIS>2.0.CO
[7]  
2
[8]  
DAVIS JM, 1982, J APPL METEOROL, V21, P1698, DOI 10.1175/1520-0450(1982)021<1698:RSRFRS>2.0.CO
[9]  
2
[10]   THE POLDER MISSION - INSTRUMENT CHARACTERISTICS AND SCIENTIFIC OBJECTIVES [J].
DESCHAMPS, PY ;
BREON, FM ;
LEROY, M ;
PODAIRE, A ;
BRICAUD, A ;
BURIEZ, JC ;
SEZE, G .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (03) :598-615