Superfluid-insulator transition in a commensurate one-dimensional bosonic system with off-diagonal disorder

被引:24
作者
Balabanyan, KG [1 ]
Prokof'ev, N
Svistunov, B
机构
[1] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[2] IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia
[3] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.95.055701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the nature of the superfluid-insulator quantum phase transition in a one-dimensional system of lattice bosons with off-diagonal disorder in the limit of a large integer filling factor. Monte Carlo simulations of two strongly disordered models show that the universality class of the transition in question is the same as that of the superfluid-Mott-insulator transition in a pure system. This result can be explained by disorder self-averaging in the superfluid phase and the applicability of the standard quantum hydrodynamic action. We also formulate the necessary conditions which should be satisfied by the stong-randomness universality class, if one exists.
引用
收藏
页数:4
相关论文
共 14 条
[1]   Cluster Monte Carlo algorithm for the quantum rotor model [J].
Alet, F ;
Sorensen, ES .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[2]   Phase transition in a system of one-dimensional bosons with strong disorder [J].
Altman, E ;
Kafri, Y ;
Polkovnikov, A ;
Refael, G .
PHYSICAL REVIEW LETTERS, 2004, 93 (15) :150402-1
[3]   Atomic Bose and Anderson glasses in optical lattices [J].
Damski, B ;
Zakrzewski, J ;
Santos, L ;
Zoller, P ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (08) :804031-804034
[4]  
FISHER MPA, 1989, PHYS REV B, V40, P546, DOI [10.1103/PhysRevB.40.546, 10.1063/1.38820]
[5]   Competition of random and periodic potentials in interacting fermionic systems and classical equivalents: The Mott glass [J].
Giamarchi, T ;
Le Doussal, P ;
Orignac, E .
PHYSICAL REVIEW B, 2001, 64 (24)
[6]   Critical behavior at superconductor-insulator phase transitions near one dimension [J].
Herbut, IF .
PHYSICAL REVIEW B, 1998, 58 (02) :971-981
[7]   Dual theory of the superfluid-Bose-glass transition in the disordered Bose-Hubbard model in one and two dimensions [J].
Herbut, IF .
PHYSICAL REVIEW B, 1998, 57 (21) :13729-13742
[8]   Supercurrent states in one-dimensional finite-size rings [J].
Kashurnikov, VA ;
Podlivaev, AI ;
Prokofev, NV ;
Svistunov, BV .
PHYSICAL REVIEW B, 1996, 53 (19) :13091-13105
[9]  
Popov V N, 1983, FUNCTIONAL INTEGRALS
[10]   Superfluid-insulator transition in commensurate disordered bosonic systems: Large-scale worm algorithm simulations [J].
Prokof'ev, N ;
Svistunov, B .
PHYSICAL REVIEW LETTERS, 2004, 92 (01) :4-157034