Noise-induced phase transitions by nonlinear instability mechanism

被引:6
作者
Carrillo, O. [1 ]
Ibanes, M. [1 ]
Sancho, J. M. [1 ]
机构
[1] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
来源
FLUCTUATION AND NOISE LETTERS | 2002年 / 2卷 / 01期
关键词
noise; nonlinearities; phase transitions; nonequilibrium;
D O I
10.1142/S021947750200052X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First and second-order nonequilibrium phase transitions induced by an external nonlinear multiplicative noise are studied. A theoretical approach gives that the physical mechanism responsible for these transitions is a nonlinear instability of the homogeneous phase. Mean-field analysis and numerical simulations confirm the theoretical prediction.
引用
收藏
页码:L1 / L11
页数:11
相关论文
共 12 条
[1]   Regular wave propagation out of noise in chemical active media -: art. no. 078302 [J].
Alonso, S ;
Sendiña-Nadal, I ;
Pérez-Muñuzuri, V ;
Sancho, JM ;
Sagués, F .
PHYSICAL REVIEW LETTERS, 2001, 87 (07) :78302-1
[2]   LINEAR-STABILITY ANALYSIS FOR BIFURCATIONS IN SPATIALLY EXTENDED SYSTEMS WITH FLUCTUATING CONTROL PARAMETER [J].
BECKER, A ;
KRAMER, L .
PHYSICAL REVIEW LETTERS, 1994, 73 (07) :955-958
[3]   EFFECTS OF EXTERNAL NOISE ON THE SWIFT-HOHENBERG EQUATION [J].
GARCIAOJALVO, J ;
HERNANDEZMACHADO, A ;
SANCHO, JM .
PHYSICAL REVIEW LETTERS, 1993, 71 (10) :1542-1545
[4]  
GARCIAOJALVO J, 1999, NOISE SPATIALLY EXTE
[5]   Noise-induced scenario for inverted phase diagrams -: art. no. 020601 [J].
Ibañes, M ;
García-Ojalvo, J ;
Toral, R ;
Sancho, JM .
PHYSICAL REVIEW LETTERS, 2001, 87 (02) :1-020601
[6]  
IBANES M, 2000, LECT NOTE PHYS, P247
[7]   Noise-supported travelling waves in sub-excitable media [J].
Kádár, S ;
Wang, JC ;
Showalter, K .
NATURE, 1998, 391 (6669) :770-772
[8]   First-order nonequilibrium phase transition in a spatially extended system [J].
Muller, R ;
Lippert, K ;
Kuhnel, A ;
Behn, U .
PHYSICAL REVIEW E, 1997, 56 (03) :2658-2662
[9]  
SANCHO JM, 2000, LECT NOTE PHYS, P235
[10]   GENERATION OF GAUSSIAN DISTRIBUTED RANDOM NUMBERS BY USING A NUMERICAL INVERSION METHOD [J].
TORAL, R ;
CHAKRABARTI, A .
COMPUTER PHYSICS COMMUNICATIONS, 1993, 74 (03) :327-334