Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries

被引:154
作者
Hu, YS [1 ]
Kong, WH [1 ]
Hong, L [1 ]
Huang, XJ [1 ]
Chen, LQ [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Lab Solid State Ion, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
vinyl ethylene carbonate; electrolyte additive; density functional theory; lithium ion batteries;
D O I
10.1016/j.elecom.2003.10.024
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Vinyl ethylene carbonate (VEC) has been investigated as an electrolyte additive for use in lithium ion batteries. Even in small additive amounts (5 vol%) VEC was capable of preventing propylene carbonate (PC) co-intercalation into graphite. The formation of a stable passivating film on the graphite surface is believed to be the reason for the improved cell performance. The passivating film resulting from the reductive decomposition of VEC on the graphite surface was comprehensively studied by FTIR and XPS as well as the density functional theory (DFT) calculations. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:126 / 131
页数:6
相关论文
共 18 条
[1]   Binary mixed solvent electrolytes containing trifluoropropylene carbonate for lithium secondary batteries [J].
Arai, J ;
Katayama, H ;
Akahoshi, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) :A217-A226
[2]   A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J].
Aurbach, D ;
Markovsky, B ;
Shechter, A ;
EinEli, Y ;
Cohen, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3809-3820
[3]   THE SURFACE-CHEMISTRY OF LITHIUM ELECTRODES IN ALKYL CARBONATE SOLUTIONS [J].
AURBACH, D ;
EINELY, Y ;
ZABAN, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :L1-L3
[4]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[5]   IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS [J].
AURBACH, D ;
DAROUX, ML ;
FAGUY, PW ;
YEAGER, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (07) :1611-1620
[6]   A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries [J].
Bar-Tow, D ;
Peled, E ;
Burstein, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :824-832
[7]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[8]   INORGANIC FILM-FORMING ELECTROLYTE ADDITIVES IMPROVING THE CYCLING BEHAVIOR OF METALLIC LITHIUM ELECTRODES AND THE SELF-DISCHARGE OF CARBON LITHIUM ELECTRODES [J].
BESENHARD, JO ;
WAGNER, MW ;
WINTER, M ;
JANNAKOUDAKIS, AD ;
JANNAKOUDAKIS, PD ;
THEODORIDOU, E .
JOURNAL OF POWER SOURCES, 1993, 44 (1-3) :413-420
[9]  
BESENHARD JO, 1992, MATER SCI FORUM, P647
[10]   The role of SO2 as an additive to organic Li-ion battery electrolytes [J].
EinEli, Y ;
Thomas, SR ;
Koch, VR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1159-1165